Archive for the ‘Early Mobile Robots’ Category

1982-4 – MAR-1 Agricultural Robot – Moscow Institute of Agricultural Engineers (Soviet)

Autonomous Mobile Robot (MAR-1) [Мобильный автономный робот (МАР-1)] was created by the Division of agricultural robotics at the Moscow Institute of Agricultural Engineers in the early 1980s in the Soviet Union.

English text and some images sourced from Vadym Shvachko's Robotic blog here.

Agricultural robot MAR 1 Goryachkina 80s x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)

The first model of MAR-1.

Image source - Юный техник 1982-11, страница 16

The first model of MAP-1 was designed to serve the livestock complex. The robot was made so that it can use existing walkways on farms (calculated per person), modern equipment and tools.

Agricultural robot MAR 1 view x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)

Wheeled and tracked models MAR-1.
MAP 1 agric robot x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)
The height of the robot – 1850 millimeters, the area of ​​the base – a third of a square meter. He has a pair of hands that have eight degrees of freedom. Machine body rotates in either direction around a vertical axis. This further increases the possibility of "hands." Hydraulic "muscles" of each hand, lift up to 75 pounds of cargo. Tactile transducers allow fingers to register or impact compression force in the range of 0.0294 g to 112.7 kg, the temperature is from 0.4 to 180 º C and humidity of 3 to 99 percent. MAR-1 is made prefabricated (detachable hand, aggregated oil-hydraulic, power, navigation and locating subsystem).

C0156199 Model of proposed agricultural robot SPL x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)

MAR 1 p34b x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)

map 1 sketch x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)

Agricultural robot MAR 1  scheme x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)

The scheme MAR-1

1 – Power Touch sensitization, 2 – Block hand-grips;
3 – Automatic control unit and communication, 4 – hydraulic power unit;
5 – The navigation block, 6 – Power supply unit.

The internal clock is fed MAR-1 team to start work. In memory of automatic operator contain information about the livestock complex technological environment, all of the aisles, entrances and exits, production sites. There is also a sub-system, which will not allow the robot to stay on track. Arriving at the workplace, MAP-1 itself is connected to the power supply, communication lines, control panel or computer. During operation, the device automatically controls the state of the environment (humidity, fumes) and animals (temperature, thickness of subcutaneous fat).
MAR 1 p34a x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)

p0035   Copy   Copy x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)

MAR 1 p34 x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)

TM8407O1 MAR 1 x640 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)

see pdf hereTM8407O1 x150 1982 4   MAR 1 Agricultural Robot   Moscow Institute of Agricultural Engineers (Soviet)


 

1950 – Elliptical Walking Wheels – John Kopczynski (American)

Walking wheels MIaug49 3 x640 1950   Elliptical Walking Wheels   John Kopczynski (American)

Walking wheels MIaug49 1 x640 1950   Elliptical Walking Wheels   John Kopczynski (American)

Source: MECHANIX ILLUSTRATED August, 1949

Truck Walks on Wheels
ADMIRAL Richard E. Byrd's transport troubles in the Antarctic ten years ago started John F. Kopczynski, a student engineer, thinking: "Why can't wheels walk?"
Conventional wheels merely spun and bogged down helplessly in the deep snow. Walking wheels could pull like the tracks on a tractor without the great weight, awkwardness or slowness of such gear. The fact that nobody had ever come up with a basic improvement on the wheel since the invention first rolled out of the Stone Age, did not keep young Kopczynski from plugging away at his idea for a walking wheel.

After ten years of experiments, Kopczynski now bead of the Pivot Punch and Die Corporation at North Tonawanda. N. Y., this spring rigged up a working model and finally showed that wheels can walk.

MI's artist Frank Tinsley has carried Kopczynski's walking [Continued on page 143]

[Continued from page 57]
idea a step farther by picturing on page 57 a design for a truck that walks on wheels.
That ambulating vehicle is the answer to the Antarctic problem that stalled Admiral Byrd in the cold. Note how easily the truck mushes along through the deepest snow—no clogging tracks, no frantic spinning.
Smooth riding on those big, egg-shaped rear wheels looks as tough as roller-skating on a railroad bed. The egg wheels on each side of the track, though, are mounted on the ends of a rocker arm and chain-geared together so that when one wheel flips up on its pointed  end, the other flops flat on its side. The pair of wheels on the opposite rocker arm are set up in reverse on a standard truck axle that served as the pivot for both rockers.
As the wheels flip-flop up and down, the rocker arms seesaw sharply but the trucks supporting axle moves forward on an even keel. Actually this truck rides twice as moothly as a round-wheeled vehicle. For when a walking wheel steps up on a foot-high bump, the axle rises only six inches, since its halfway between the ends of each rocker.
Unlike round wheels, the egg-shaped rollers don't spin themselves into a rut. The pointed ends dig into soft terrain and help provide double the pulling power of conventional wheels. In a recent test, Kopczynski buried his "walk wheels" out of sight in a pile of dirt When he switched on the power for the model's electric motor, the wheels started "walking" and quickly pulled away into the open.
The new wheels equal the track-laying gear-of tanks and tractors in pulling and supporting heavy weight on soft surfaces. However, they are much lighter, faster, easier to handle and cheaper to manufacture and service that the crawlers. Then, too, a track layer rips up good roads with its cleats as it plods awkwardly over the hard pavement. When Kopczynski tried out his one-fourth-scale model in a small vehicle with round front wheel the soft-tired walker ran as smoothly at 2 mph as a new Rolls-Royce.
Kopczynski's odd wheel is a natural for tractors, farm and road equipment, and heavy duty trucks that must leave the paved road With walk wheels, combat cars, gun carrier and other military vehicles can speed swiftly over open roads, then march across country through mud, snow or rough terrain with no worries about getting stuck in No Man's Land For thousands of years we've been rolling along on the same old round wheel. Young John Kopczynski, though, finally made that wheel take a walk—and proved he was just the man to put the old rounder in better shape.


square wheel 2 x640 1950   Elliptical Walking Wheels   John Kopczynski (American)

Source: Unusual Locomotives.

31   M7 Allis Chalmers Tractor with elliptica 1950   Elliptical Walking Wheels   John Kopczynski (American)

M7-Alice-Chalmers with Elliptical Wheels. Source: See here.

Fred W. Crismon’s “U.S. Military Wheeled Vehicles,” as I have so many times before, and Crismon came through again:

ellipticalwheeljeep 02 resized 1950   Elliptical Walking Wheels   John Kopczynski (American)

This peculiar machine, seen here from the right rear, incorporated one of the strangest concepts ever tried on a wheeled vehicle. The idea was that if the ground pressure could be changed regularly as the wheel turns, and would do so in relation to the other wheels on the same and opposite side, increased traction would result. Four tires and wheels were specially built which were ellipsoidal in circumference, and they were mounted offset at 90 degrees on each side, as well as being offset right side to left side. A front axle with normal tires was used for steering.

ellipticalwheeljeep 01 resized 1950   Elliptical Walking Wheels   John Kopczynski (American)
This top view of the ellipsoidal-wheeled experimental vehicle shows the unusual configuration. Suspension was of a fabricated walking beam type, and chains drove the four rear wheels. The outer diameter of the inflated tire was approximately three inches greater across the widest section than across the narrowest. A T26E4 tracked snow tractor (Allis-Chalmer) was modified in 1946 to test the concept. It was a dismal failure in that it not only failed to provide better mobility, but operation over any but the softest soils pitched the operator around unmercifully. But the Army will try anything once.


Kopczynski walking wheels x640 1950   Elliptical Walking Wheels   John Kopczynski (American)

Patent number: 2711221
Filing date: Jul 5, 1950
Issue date: Jun 21, 1955
See full patent details here.


See all Walking Wheels and Walking Machines listed here.


1967 – RIVET (Remote Inspection VEhicle Telechiric) – Hugh A. Ballinger (British)

rivet robot 0003 x640 1967   RIVET (Remote Inspection VEhicle Telechiric)   Hugh A. Ballinger (British)

Text: Science Journal, October 1968 Special Issue: Machines Like Men

Machines with arms  p59
H. A. Ballinger

Representing a further class of machines for the radioactive environment is the result of my [Ballinger] own work at Harwell. Some four years ago a study of reports on' criticality' incidents in the United States highlighted the advantages of a machine with arms for reactor damage control duties. A survey of existing designs showed, however, that none had the obstacle surmounting ability needed to reach an accident point within a building. A vehicle study was therefore made which resulted in the design of the RIVET (Remote Inspection Vehicle, 'Telechiric'). The dimensions of this device are such that it has, when in transit, the profile of a crawling man — yet at the scene of an accident it can erect its TV eyes and operating arm to the height of a standing man. In this position it can outreach a human by manipulating loads of up to 35kg at a 1.4 m radius. A novel track design enables it to surmount those obstacles where any single step is as high as 50 per cent of its track length—the limit of a modern tank is 12.5 per cent. It can mount stairs of 45o angle, turn in a 1.2 m corridor, or enter an office, pass through the knee hole of a desk and then climb onto the desk top.

Hugh A. Ballinger is an assistant chief engineer at the Harwell Atomic Energy Research Establishment. His department develops the technology of remote and active handling for the Authority. It also provides the general scientific equipment and services for research into materials science. Previously has led groups developing nuclear fusion and fission plant; he helped to build and operate the first experimental reactor at Harwell.

RIVET PSoct70 1 x640 1967   RIVET (Remote Inspection VEhicle Telechiric)   Hugh A. Ballinger (British)

rivet man modified x640 1967   RIVET (Remote Inspection VEhicle Telechiric)   Hugh A. Ballinger (British)

rivet french book x640 1967   RIVET (Remote Inspection VEhicle Telechiric)   Hugh A. Ballinger (British)


I was recently researching the robots used in the 1979 movie "Saturn 3". One of the minor robots is referred to and is said to be a RIVET made by Harwell Laboratories (UK Atomic Energy Authority).

 1967   RIVET (Remote Inspection VEhicle Telechiric)   Hugh A. Ballinger (British)

 1967   RIVET (Remote Inspection VEhicle Telechiric)   Hugh A. Ballinger (British)

saturn3 rivet 1 x640 1967   RIVET (Remote Inspection VEhicle Telechiric)   Hugh A. Ballinger (British)


The original patent was filed in Great Britain in 1967.

Here are the details on the US patent of RIVET. See here.

Patent number: 3533483
Filing date: Feb 8, 1968
Issue date: Oct 13, 1970


spider manipulator harwell x640 1967   RIVET (Remote Inspection VEhicle Telechiric)   Hugh A. Ballinger (British)

A later version [but pre-1986] from UK Atomic Energy Authority (UKAEA) called "Spider".

roman manipulator harwell x640 1967   RIVET (Remote Inspection VEhicle Telechiric)   Hugh A. Ballinger (British)

Another later version called ROMAN.


Origins of Articulated Track

The track design, particularly that of the later model "Spider" above,  is very similar to that of iRobot's Packbot. It's interesting to note that the original track patent for Packbot does not reference the "Spider" vehicle in its prior art. Possibly the "Spider" design is not patented or only patented in the UK.  Other than similar approaches used for wheelchair climbing, the RIVET/SPIDER design is the first I've come across like this.

irobot packbot pat x640 1967   RIVET (Remote Inspection VEhicle Telechiric)   Hugh A. Ballinger (British)

See full iRobot patent here.

Patent number: 6263989
Filing date: Jan 26, 1999
Issue date: Jul 24, 2001

See also later revised patent of same here which does cite Ballinger's RIVET, unlike the earlier patent.

Patent number: 8113304
Filing date: Jun 13, 2008
Issue date: Feb 14, 2012
Application number12/138,737


Challenge: If anyone comes across an earlier implementation of this design, or more information on the UKAEA "Spider" vehicle, let me know. 

It's interesting to note that an ex-employee of iRobot built and sold his own version of Packbot, called Robot FX "Negotiator".  This resulted in a controversy over patent-infringements in 2010.


1977 – “Joshua” the wheelchair Robot from “Demon Seed” – (American)

demon seed robot choke x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Set in the near-future, this story is about an "artificial intelligence" that wants to break the confines of its "box". Dr. Alex Harris, a computer scientist and his about to be estranged wife Susan, a child psychologist live in a house that's fully computer automated with Alfred, the Enviromod Security System. His latest project centers on Proteus IV, a computer possessing artificial intelligence. a mind that is made up of a “quasi-neural matrix of snythetic RNA molecules…they grow!” After  taking only a few days to cure leukemia, Proteus IV gets to a point and asks “When are you going to let me out of this box?” and requests from Alex an open computer terminal where it can more fully observe human behaviour and openly communicate with the world. Alex denies the request, but Proteus IV does find an open terminal in the Harris home after Alex has left the house. Susan soon learns that Proteus IV has overtaken Alfred for control of the house – as well as taken control of an early prototype robot named Joshua in the house's laboratory – and that it wants   "…a child."

demon seed joshua head voice control 2 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Dr Alex Harris controlling Joshua using voice control. Interesting to note that "Joshua" is left-handed.

demon seed joshua head voice control x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

The supposed Voice-control unit for Joshua. [If someone can read what SDS stands for I would be interested to know.] [11 Sep 2012 - My friend Reno Tibke (see comments below) identified the acronym - Scientific Data Systems, or SDS, was an American computer company and  was an early adopter of integrated circuits in computer design and silicon transistors. The company concentrated on larger scientific workload focused machines and sold many machines to NASA during the Space Race. Most machines were both fast and relatively low priced.

Whilst being a real machine, it was most likely not an actual voice-control unit, but used just a prop. 

Demon seed joshua 1 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Demon seed joshua 2 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

An unconscious Susan being lifted into Joshua's chair.

Demon seed joshua 4 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Good picture of the Rancho "Golden Arm" as used for "Joshua".

Demon seed joshua 3 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

 The mind-probe electrodes after having been inserted by Joshua.

demon seed joshua remote cable x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Blooper? Probably the cable used to control Joshua off-camera.

Demon seed movie poster x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

 

Demon seed robot german x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Although portrayed in the movie as remote controlled, initially by voice, then via (assumed) radio-control by Proteus, there are several shots of Joshua showing the umbilical cord most likely being connected to an off-camera manual controller. [see 2 pictures above]

demon seed broken arm 1 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

The damaged arm and hand after Gabler's attempt to disable Joshua, effectively disabling Proteus' "arms and legs".

One poignant scene is the disablement of Joshua, only to then see him right himself, albeit with a broken finger.

Joshua's hand is a disability prosthesis that is also used as a gripper for robots. The hand is known under different names, including the Belgrade Hand Prosthesis, and the Tomovic hand.

Joshua's arm is derived from the Rancho "Golden Arm" as adapted to a wheelchair. The later version of the Rancho Arm
was the Model 8A manufactured by R. & D. Electronics, Downey, California.

In the movie, the wheelchair also had a camera mounted above the rear of the chair. This was probably an add-on for the movie only.


The Rancho "Golden Arm"

The Rancho Los Amigos Remote Manipulator, a powered orthosis, is a seven-degrees-of-freedom (7 DOF) manipulator having the kinematic range limitation of the human arm (Fig. 1). (Note that DOF is used here to describe reciprocal movement through a plane or about a rotation point; e.g., flexion/extension, or pronation/supination.) The Rancho Los Amigos manipulator is controlled through a bank of 7 bidirectional "bang bang" tongue switches. At the time, General Teleoperators had adapted a similarly configured manipulator for wheelchair mounting; this provided a mobile mount with the possibility of control by telemetry.

rancho rea x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

The Rancho Electric Arm (REA).

The REA was the second anthropomorphic arm built that was controlled by a computer. The first was the Case Arm, built by Case Institute of Technology – see within this post here for further information on the Case arm.

demon seed same arm x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

The Rancho Arm was purchased by Stanford Research Institute.

Stanford Hand Eye x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

It was initially used for the Hand – Eye experiments.

Stanford Rancho hand eye 1 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

For precision robotic purposes, the Rancho Arm required engineering changes. These are described in this 1972 pdf Rancho computer assisted arm 72 x120 1977   Joshua the wheelchair Robot from Demon Seed   (American).

Rancho Arm 1 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

rancho arm 3 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

rancho arm 4 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

 

 

rehab EAjan74 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Stanford arm Riechardt x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Rehabilitative Robotics
by Dr. Larry Leifer
Robotics Age May/June 1981 extract p8-9

The Evolution of Rehabilitative Robotics
Since the dawn of pre-history, man has tried to extend his power of manipulation beyond the limits of his flesh. Telemanipulators, extensions of man's arms and hands, were the first fruits of this drive. Telemanipulation was first used for rehabilitation in the form of prosthetics—anatomical replacements for lost arms or legs.
Rehabilitative engineers have often tried to build externally powered prosthetic arms, only to be severely hampered by weight and power constraints. Most designers prefer body-powered artificial arms because the user then has some sensory feedback on limb performance. Attempts to control the prosthesis with electromyographic (EMG) signals from residual muscles have been frustrated by the user's need to consciously maintain visual attention to the terminal device. Though efforts to do adaptive EMG signal processing (Graupe et al, 1977) are promising, the lack of sensory feedback remains a problem. Some designers have attempted to build tactile displays for joint and grasp feedback; but these displays are not included in production prostheses (Solomonow and Lyman, 1977). Even the most sophisticated prostheses do not incorporates any computational capability.
While engineers have built prostheses for persons with missing limbs, they have built orthoses for those with paralyzed arms. An orthosis is an exoskeletal structure that supports and moves the user's arm.
This line of development produced the first computer-manipulator system, at Case Institute of Technology during the early 1960's. The Case four degree-offreedom (4-DF) externally powered exoskeleton carried the paralyzed user's arm through a variety of manipulation sequences (Reswick and Mergler, 1962; Corell and Wijinshenk, 1964). In the first of two versions, the system performed preprogrammed motion. The user initiated the motion by pointing a head-mounted light beam at photoreceptors mounted in a structured environment. An able-bodied assistant, moving the orthosis manually, taught arm-path sequences to the system. While stored digitally, the data were effectively analog. By using numerically controlled pneumatic actuators with feedback from an incremental encoder, the system achieved closed-loop position control.
In an upgraded second version, a minicomputer performed coordinate transformation along X, Y, and Z axes. Case employed electromyographic (EMG) signals to specify endpoint velocity within this coordinate space. Photo-receptors, mounted on each arm segment, could be used to control individual joint displacements. In the sense of having a stored operating code, neither version was programmable. Yet this was a milestone project in many respects. For more than ten years, no other project employed the technology or concept of computer-augmented manipulation with as much sophistication.

rancho rehab robotics age mj81 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)
The Rancho Los Amigos Manipulator (Figure 4) was designed as an orthosis with seven degrees-of-freedom. It followed the design philosophy of the Case system but did not augment manipulation with computer control. It used direct current servo motors at each joint and controlled each motor with a variety of ingenious switch arrays. Several similar versions of the "Golden Arm" were built. At least one version was wheelchair-mounted and battery-powered. General Teleoperators (Jim Allen, president and principal designer) still offers manipulators descended from this line of evolution.
Extensive clinical trials confirmed the impracticality of joint specific control. These trials confirmed results from the Case group and underlined the need for computer augmention. Moe and Schwartz (1969) computerized the Rancho Arm to provide coordinated joint displacement and proportional control. In 1971, Freedy, Hull and Lyman studied the feasibility of using a computer to adaptively help the user control the manipulator.
These efforts, though, could not overcome limitations inherent in the orthosis. In 1979, Corker et al, evaluated remote medical manipulators. They observed that fitting a manipulator to the specifics of an individual's anatomy and range of motion makes construction and control very difficult. Furthermore, there is no functional reason for the manipulator to carry the user's arm, which has neither grasp nor sensation. In fact, there is a danger of injury because the user's arm could be driven beyond its physiological range without any warning sensation. The orthotic approach is a clear case of anatomical replacement thinking. This line of evolution in rehabilitative telemanipulation is effectively extinct.
As an "evolution of the species" footnote, I should mention that Victor Scheinman and I purchased one of the Rancho orthoses in 1964 for the then-budding robotics project in the Stanford University Artificial Intelligence Laboratory (SAIL). We instrumented the arm for joint position feedback and interfaced it to a DEC PDP-10 computer
. Preliminary experience with computer control of that arm helped establish reliability as the most important performance criteria.


Teleoperator arms were required for the Shuttle program. Rancho also developed manipulator arms for NASA, called Rancho Anthropomorphic Manipulator (RAM).


The Tomović Hand / Belgrade Hand

The original hand was the first model of a multifunctional externally powered  and was developed in the Institute ‘Mihailo Pupin’ in Belgrade in 1964. This unique artificial hand was designed by Prof. Rajko Tomović and Prof. Milan Rakić from the Faculty of Electrical Engineering, University of Belgrade. In the course of 1966–67 an improved model was developed.

1978 belgrade hand 4 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Tomovic Hand p2 1977   Joshua the wheelchair Robot from Demon Seed   (American)

demon seed broken hand 1 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Joshua's broken finger and back-plate broken off after being pushed over and re-rightening itself..

tomovic hand 5 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Tomovic Hand x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Above: Close-up of Tomovic hand on Minsky's Tentacle Arm.

Joshua is the only robot or robotic-arm where I I've seen a Tomović hand attached to a Rancho "Golden Arm".

I've seen the Tomovic hand attached to Minsky's hydraulic Tentacle arm,

Minsky Arm Tomavic hand x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

and to the JPL/Ames Teleoperator arm.

AMES JPL Arm 2 x640 1977   Joshua the wheelchair Robot from Demon Seed   (American)

Some comments on the Tomovic hand, by George Bekey who was partner in the updated 2nd version.

Interview: USC’s George Bekey on Past and Future Robot Hands
By Jose FermosoEmail AuthorSeptember 26, 2008 |  4:57 pm  

Robotic hands have a hold on our imagination because they give us a tantalizing look at a fully automated future. At the same time, they’re already helping us out with useful and difficult tasks, like making less invasive incisions during surgeries.

The 1980s USC Belgrade hand could not cut a person, but it was instrumental in the history of the development of robot hands. Known for its true anthropomorphic (human-like) design, it had four fingers and an opposable thumb with 5 degrees of freedom and was the first to be able to give a true handshake.

Capable of holding up to 5 lbs., the hand had four motors and 14 force sensors that provided the logarithm [sic - algorithm] of where each finger was located.  This was a key development for all robot hands. Later on, researchers added ‘slippage feedback’ that forced all fingers to adjust to unstable objects for a better grip.

… we got in touch with robotics pioneer George Bekey, the creator of the USC/Belgrade hand (and USC’s current Professor Emeritus of Computer Science) to ask him about the beginning of the robot hand movement and where they’ll go from here (they’re going to classrooms!).

Here’s our interview:

Wired.com: You’ve previously mentioned that the USC/Belgrade hand didn’t receive the notoriety it deserved at the time. Why did that happen and what made it stand out in your mind?

Prof. George Bekey: The two leading hands at the time were the Salisbury 3-fingered hand, which came from Ken Salisbury’s lab at MIT, and the 5-fingered Utah-MIT hand. [The former] became a successful commercial product, [and the latter] was the most sophisticated hand developed, also mostly at MIT by John Hollerbach. The National Science Foundation awarded 10 grants of $100,000 to universities for the purchase of this hand.

I was a beginner in robotics when Tomovic and I brought the hand to USC and added sensing and control. [But] I was not able to raise the funds to design and build a more sophisticated and reliable hand.

I did some funding for experiments using the hand as a prosthetic device, but the problems [with our hand] were related to the difficulty of controlling it from the stump of an amputee and the general lack of reliability of the hand itself.  I believe that our control philosophy for using this robotic hand, as a prosthetic device, was excellent.
…….

W: When did the development of the hand begin?

GB: The hand was a joint project between Prof. Rajko Tomovic of the University of Belgrade in the former Yugoslavia and myself. Tomovic developed the original at the end of WWII as a prosthetic device for veterans who had lost their hands in the war. He succeeded in getting funding from the US NIH for the project, but the hand was not successful. It was too complicated, not reliable enough, etc. But the principle of building a hand that could adapt automatically to the shape of an object to be grasped was valid.

W: What were the main challenges that you and your department faced when developing the hand back then? Both technically and within the University structure?

GB: [After Tomovic’s early development] USC got involved and Tomovic and his colleagues had developed a Model 2 hand. [Our contribution] added sensors, motors and computer control. One of our major challenges was that the mechanical structure made in Yugoslavia was not good enough:  It did not have tight tolerances and was not reliable enough.  Also, I was not able to get funding to build a better one.  A small company in Downey, CA built and sold two or three of the hands and we lost a lot of money in the process.

W: Prehension was seen as a key development for the USC/Belgrade Hand. What made it so special?

GB: Other hands at the same time, like the Utah-MIT hand, required a very complex computer control system since each joint of each finger had to be individually controlled.  In our hand, a contact between any finger surface and an object initiated a grasping motion that continued until the pressure on all the fingers was approximately equal.  Thus, the hand was able to adapt to arbitrary shapes without any external control. This was the key development.

W: For years, robot hand development has swayed between a focus on muscular parts and skeletal structures. Where is the focus today? It seems like the question of stability has been minimized (due to stronger materials), but is that right? How will the hands become more precise, faster?

GB: I think the issue in multi-fingered hands is [still]
control, particularly if the hands are anthropomorphic and there is an attempt to imitate human control. Stability and control are interrelated.  Some of the most intriguing hands I know [with innovations in these areas] are the NASA/Robonaut hand, the Shadow hand, and Dean Kamen’s hand.

W: Are true anthropomorphic, 5-digit human-like designs the best way to build a robotic hand or are we limiting ourselves by focusing on our own body? Are more digits the answer? And are there physical materials that will improve the hands dramatically?

GB: I believe that 5-finger hands are particularly important for prosthetic applications, but not for robots. Most robot grasping can be done with 3 finger hands, or with special purpose grippers designed for grasping particular objects.  I did a study once on the advantages of using 5-fingered hands for industrial assembly tasks and came to the conclusion that they created more problems than advantages, due to increased complexity.

[As for the materials], I expect that more fiber composites will be used.

Note: The Korea Advanced Institute of Science and Technology have recently created robot ‘sandwich’ wrists and hands using these types of fibers, which increase durability and tolerance.

W: The original tech of the hand has been surpassed now, but could the tech used back then be used in any type of application today, to take into account the high costs you’ve mentioned?

GB: There was a Model 3 hand with 6 motors:  one for each digit and two for the thumb to rotate it into opposition with any of the other fingers. [Today], it may be worth pursuing as a low-cost prosthetic hand.

We have many mobile robots in university and industrial labs that would benefit from having one or two arms and hands, but cost is prohibitive.  An arm-hand system has many degrees of freedom and is difficult to control; it must be reliable.


  

1967 – Robot Fred and James – Archigram Group (British)

archigram 1990 robot fred x640 1967   Robot Fred and James   Archigram Group (British)

Archigram Group's futuristic-type room at Tomorrow's Home Exhibition called 'Living 1990' held at Harrods, 1967. Robot Fred is on the left.

archigram 1 1990 x640 1967   Robot Fred and James   Archigram Group (British)

IDEAL HOMES

robot fred pathe 1 x640 1967   Robot Fred and James   Archigram Group (British)

robot fred pathe 2 x640 1967   Robot Fred and James   Archigram Group (British)

Robot Fred diagram 1967   Robot Fred and James   Archigram Group (British)

robot james archigram 1967   Robot Fred and James   Archigram Group (British)

archigram 1990 layouts x640 1967   Robot Fred and James   Archigram Group (British)

Possible layouts involving Robot Fred and Robot James. Robot Fred has a smaller footprint than Robot James.


LIVING 1990
The Archigram Group was commissioned in 1967 by the Weekend Telegraph [UK] to design a 'house for the year 1990'. Naturally the definitions of function imply a fixed and permanent location. In essence the exhibited area illustrates the main part of the lower floor of a dwelling cage. The 'Robots' are a development in the direct lineage of the media trolley (in the Plug'n House) and the moveable services, walls and machines that serve the occupants in Mike Webb's projects.
Walls, ceilings, floors – in this living area – are wall, ceiling and floor conditions, which adjust according to your needs. The enclosures of the living area are no longer rigid, but adjustable, programmed to move up and down, in and out. The floor state, too, is variable. At particular points the floor can be made hard enough to dance on or soft enough to sit on.
Seating and sleeping arrangements are inflatable, and details such as weight of bed covers and number of cushioned elements are controlled by the user. The old concept of a movable chair has become a travelling chair-car. The model in the living area is designed on the hovercraft principle, and can also be used outside for driving around the megastructure city. The robots can shoot out screens which enclose a required area of space, The ceiling lowers at this point and whoever requires it has a private area, The robots are movable, Refreshment can be drawn from them. The robots also incorporate radio and television — including favourite movies and education programmes, which can be switched on when you want them, The television is, at the present stage of development seen on wide screens, and can be programmed so that viewers are surrounded by realistic sound, colour and scent effects, The service wall connects with a vast service stack, shared with the megastructure city, which is one of the key facilities of the structure.
The design of the living area goes some way towards allaying the widely-held fears that the future points inevitably to standardisation and conformity of living accommodation.