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Bellows-type springs, or closed elastic tubes with corrugated walls, can be designed to produce three basic  
motions. Given a particular orientation of the corrugations, a bellows can either extend, bend laterally, or twist 
along its longitudinal axis when subjected to internal pressure. Bellows made of elastomeric materials such as 
polyurethane can be incorporated in robotic arms and in the legs of walking machines. In this research, 
extension was achieved by employing uniform, circumferential corrugations; bending by extending the 
corrugations only 180 degrees around the circumference; and twisting by orienting the corrugations at angles 
between 20 and 70 degrees with the longitudinal axis. The purposes of this paper are (1) to present the general 
quantitative results relating load, motion, and material properties for three types of bellows; and (2) to illustrate 
how combinations of the three can be used for a pick-and-place robotic arm and for a six-legged walking 
machine. 
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1. INTRODUCTION 
Historically, bellows or tubes, fabricated of metal or a 

polymeric material with axially symmetric corrugations, 
have been employed in a wide variety of engineering 
applications, which  include protective boots covering 
connections in automobile suspensions, sections of 
motor shafts to allow for misalignment in torque 
transmission, and hand siphon pumps. These bellows 
with axially symmetric corrugations are especially 
useful where extension and lateral bending is required. 
Spring rates for such bellows were compiled by 
Matheny.1) A critical survey of corrugated geometries 
with a critique of bellows mechanics was given by 
Wilson.2) A practical type of bellows that is designed to 
bend when subjected to internal pressure is the Simrit 

finger.3) Here, the corrugations extend only part way 
around the circumference. Part of this present study 
addresses the mechanics of such a bellows, for which 
applications to robotic arms have been previously 
documented.4-6)  Other types of bellows for robotics 
include pressurized, orthotropic tubes with corrugations 
inclined with the long axis, and designed to twist along 
the longitudinal axis when pressurized.7,8)  

Reviewed herein is the mechanical behavior of 
extension, bending, and twisting bellows, designated as  
actuators when applied to robotics. New analyses, with 
experimental validation,  include the modeling of a 
bending actuator as a long slab capped by a half-ellipse 
of variable thickness, and a lower bound description for 
torsion tube orthotropy. This study concludes with two 
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applications of actuators in combination: a robotic arm 
and a walking machine. 

 
 

2. BELLOWS FOR EXTENSION 
   Shown in Fig. 1 is a diagram of a bellows with 
circumferentially uniform corrugations, which is used 
exclusively for extension. When subjected to an 
internal pressure p and/or an axial load F, the axial 
deflection is δ. The relatively rigid interior telescoping 
tubes add lateral stability and serve to minimize side 
deflections when the bellows is subjected to lateral 
loading. This typical elastomeric bellows, with a 
Young’s modulus E, has a uniform wall thickness t, a 
mean radius R, a wave length of 4b, and a total length 
of 4bn, where n is the number of corrugations. As 
suggested by Donnell,9) the longitudinal extension δ for 
an applied load F can be expressed in terms of these 
geometric parameters and the reduced modulus E', or 
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in which 2πRt is the mean cross sectional area. The 
theories available to compute E' for various corrugation 
geometries such as triangular, rectangular, U-shaped, or  
Ω−shaped configurations were summarized by 
Wilson.2) 

 
 
 
 
 
 
 
 

 
 
Fig. 1. An extension bellows with a telescoping tube. 
 
 
 
 
 

  2.1 Example: Use available theories to evaluate E' 
and the spring rates F/δ and F/p  for the polyethylene 
siphon bellows, manufactured by Bel-Art, Ace 
Scientific Supply Co, USA. The siphon’s dimensions 
are given in the insert to Fig. 2, and its Young’s 
modulus  was measured as E=199 MPa. 
   In the first theory, Donnell9) assumed shallow 
corrugations, in which 2h/R«1 and t/h«1, and assumed 
that Poisson’s ratio effects were negligible (ν=0). The 
ratio E/E' can be calculated from the Donnell equations 
(2)-(4), in which λ=Rt/b2 and β=C2 /λ2. 
        

 
Fig. 2. Comparison of spring rates of three theories to 
experimental data. 
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The results are that E'=1.58 MPa. Using Eq. (1), the 
spring rate becomes F/δ=7.17 kN/m, which is the 
inverse slope of the solid line of Fig. 2. 
   In the second theory, Feeley and Goryl10) used 
classical beam theory to predict the equivalent modulus 
for shallow triangular corrugations as 
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The results are that E'=1.05 MPa and F/δ=4.75kN/m. 
   In the third theory, Haringx11) used a crimped plate 
theory to predict E', which can be calculated from Eqs. 
(6)-(8). 
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The results are that E'=1.32 MPa and F/δ=5.95 kN/m.  
  When E' predicted by each of these three theories is 
compared to the experimental value of E'=1.20 MPa (a 
least-squares fit), the Haringx theory of Fig. 2 shows 
the best agreement, with a deviation of 9.77 % from the 
measurement. 
 

 
Fig. 3. Axial load required to suppress length change of 
an extension bellows. 
 
  Shown in Fig. 3 is a second set of experimental data 
on the siphon bellows. Here, the length change δ was 
suppressed by the compressive load F as the internal 
pressure p was applied. A least-squares fit of these data 
to a straight line gave spring rate of F/p=3.71 N/kPa. 
Also shown in Fig. 3 is the broken line, which is based 
on the Haringx theory that F/p=πR2=3.38 N/kPa, a 
value that deviates by 9.7% from the measured value. 
 
 
3. BELLOWS FOR BENDING 
   Shown in Fig. 4 is a diagram of a bending actuator, 
the Simrit Finger. The cross section view shows a shell 
consisting of a tapered bellows extending for 180 
degrees around the circumference, in which the depth 
of the corrugations varies from  a maximum at the top 
to zero on each flat side. This shell intersects a 
rectangular slab, which has dimensions of 27.7×5 mm 
in this example. Under internal pressure p, the bellows 
expands and the actuator bends about its neutral plane, 
which is approximately at the top of the slab section. In 
applications, two such actuators affixed to a common 
base can be used in opposition to grip an object at the 
tip.  
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Fig.4. The Simrit Finger bending actuator, No. 
AU-GR1-004, US Patent No. 3981528. 
 
 3.1 Bending Experiments. Prior to formulating the 
general analysis of the bending behavior for this 
actuator, experiments were performed to determine the  
mechanical properties. In uniaxial tensile tests on the 
Simrit Finger material (polyurethane), the stress-strain 
behavior was found to be linear up to strains of 0.9. 
Young’s modulus was measured as E=13.3 MPa.  
 The results of experiments on the actuator defined in 
Fig. 4, which was cantilevered at the base, are shown in 
Figs 5 and 6. Shown in Fig. 5 are the test data for the 
vertical deflection δ, measured at the bottom tip, for 
several values of internal pressure p. Shown in Fig. 6 
are test data for the transverse tip load F that is required 
to maintain zero transverse tip displacement at the 
internal pressure p. These latter experiments indicated 
that the load-carrying capacity of this actuator was 
F=16.5 N, for which  the maximum pressure was 
p=550 MPa. At higher pressures, the actuator was 
ineffective because it began to balloon as the bellows 
began to flatten.  
 

 
Fig. 5. Comparison of theory and test data for the 
Simrit Finger defined in Fig. 4. 
 

 
Fig. 6. Lateral load required to suppress lateral 
deflection of the Simrit Finger of Fig. 4.    
 
3.2 Modeling and Analysis. The Simrit Finger is 
modeled as the smooth-walled tube of variable 
thickness, as shown in Fig. 7. Here, a rectangular slab 
of dimensions 2a0×h0 is caped by a smooth shell whose 
thickness is the area subtended by two semi-ellipses. In 
terms of the (x-y) coordinate system and the ellipse 
dimensions defined in Fig. 7, the respective outer and 
inner ellipses are 
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Fig. 7. Mathematical model of a Simrit Finger 
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For the outside ellipse, the enclosed area A0 and the 
centroid of this area located at y=c0 are given 
respectively by  
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The counterpart quantities for the inner ellipse are 
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   The neutral axis for bending is chosen as the plane 
y=0. It follows that the first moment of the slab cross 
sectional area with respect to the neutral axis is equal to 
the first moment of the area subtended  by the two 
semi-ellipses. This leads to  
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With Eqs. (10) and (11), the height of the outside 
ellipse can be deduced from Eq. (12) as 
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Here, a0, h0, a, and b are known design parameters, and 
b0 of Eq. (13) completes the geometric definition of the 
mathematical model.  
   Needed to predict the bending deflection of the 
actuator under internal pressure is Ix, the second area 
moment of the slab-shell assembly with respect to the 
neutral axis. That is 
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The effective moment M at the tip of the cantilevered 
beam actuator of length l is given by   
 

(15)         3/2 2 pabApcM ==              

 
in which the pressure load Ap for the inner ellipse acts 
at its centroid y=c, where A and c  are given by Eq. 
(11). From beam theory, the vertical displacement δ0 of 
the neutral axis at the tip, and the rotation θ of the 
vertical plane at that point are given respectively in 
terms of M as 
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With these quantities, the deflection δ at the bottom tip 
(see the insert of Fig. 5) can be computed in terms of M 
or p from Eq. (15). Thus  
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   The transverse load-carrying capacity of the 
actuator can be computed as follows. In the absence of 
internal pressure, the transverse load F applied at the tip 

113



(see the insert of Fig. 6) results in a transverse tip 
deflection of 
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If sufficient internal pressure is applied so that δ0=δF, 
the lateral deflection is suppressed. It follows from Eqs. 
(15), (16) and (18) that the external load for this 
condition, depicted in the insert to Fig. 6, is    
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   These theoretical results are now compared to the 
experimental data of Figs. 5 and 6. That is, using the 
numerical values of a0, h0, a, b, l and E listed in the 
caption of Fig. 7, numerical values of b0, M, δ0, θ, and δ 
were computed from Eqs. (13)-(17) as a function of 
pressure p. The results of these calculations are 
depicted as the solid curve in Fig. 5, which is in 
excellent agreement with the test data. The results of 
the calculations for the load-carrying capacity F as a 
linear function pressure, Eq. (19), are shown in Fig. 6. 
These results compare favorably with the 
measurements up to pressures of about 300 kPa. At 
higher pressures, the theory underpredicts the value of 
F due to ballooning and the subsequent loss of actuator 
resistance to bending 
 
. 
4. BELLOWS FOR TORSION 
 
  4.1 The Experimental Model. Shown in Fig. 8 is a 
design of an experimental torsion bellows actuator, 
which twists about the longitudinal axis at elevated 
internal pressures. Twist occurs because the bellows 
corrugations are inclined at angle θ0 with the  

longitudinal axis. The casting die for this actuator was 
constructed of two sets of concentric brass discs, each 
about 4 mm thick, and stacked concentrically to a 
height of 83 mm. The discs were shaped so that the 
space between the two stacks followed the dimensions 

of section A-A of Fig. 8. In the die, the adjacent discs 
were offset by about one degree of rotation so that the 
stack formed a helix of θ0=70 degrees. The 
experimental actuator was cast of type A150 black 
rubber. Based on standard tensile tests of this same 
material, Young’s modulus was measured as E=16.1 
MPa, a value obtained after several cyclical loadings of 
the tensile specimen. 

 
 
Fig. 8. A torsion actuator design, for which the helix 
angle is θ0=70 degrees. 
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4.2 Mathematical Model. The torsion actuator was 
modeled as the smooth, thin-walled, orthotropic 
cylinder defined in Fig. 9. The cylinder has a height l, 
a mean  

 
Fig, 9. A smooth-walled orthotropic cylinder model 
representing a torsion actuator. 
  
radius R, and a uniform thickness t. The orthogonal 
directions are (1,2) , for which the values of Young’s 
modulus are E and E' , respectively. The ridges and 
valleys of the corrugations follow along the 1-direction, 
inclined at angle θ0. Based on the theory of elasticity, 
Wilson and Orgill7)  derived three nondimensional 
system parameters to characterize the relationships 
among the cylinder’s dimensions R, l, and t, the moduli 
E and E' , the applied torque T, the internal pressure p, 
and the angle of rotation φ. Those three parameters, Π1, 
Π2, and Π3 are defined in the left column of Table 1. 
  Typical theoretical results are shown in Figs. 10 and 
11 for Π1 and Π2, respectively, plotted as a function of 
the helix angle and E/E'. The curves of Fig. 10, for 
instance, show that regardless of the value of E/E', the 
peak rotation for an unrestrained cylinder at a given 
pressure occurs for θ0=53 degrees. However, the curves 
of Fig. 11, the case of complete suppression of rotation 
achieved by applying sufficient torque to the 
pressurized cylinder, show the strong dependency of the 

peak torque on both θ0  and E/E'. For instance, if a high 
torque actuator is required, given that E/E'= 20, then θ0 
=75 degrees produces the peak torque. The theoretical 
results for Π3, the torque-rotation behavior for a 
non-pressurized cylinder, are given by Wilson and 
Orgill7) in Fig. 4 of their study. 
 
 

 
 
Fig. 10. Predicted behavior of the rotation-internal 
pressure ratio for an unrestrained, orthotropic cylinder.  
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Fig. 11. Predicted behavior of the applied 
torque-internal pressure ratio for an orthotropic cylinder 
with rotation suppressed. 
 

 

Fig. 12. (a) Rectangular model of a torque actuator’s 
half-corrugation of modulus E; and (b) the equivalent 
uniform model of modulus E'. 
 
 Unlike the case of the extension bellows, there are at 
present no refined, closed form theories that predict 
E/E' 
for torsion actuators. However, a reasonable lower 
bound for this ratio can be deduced by using the 
strength-of-materials approach and the simple shear 
model for the rectangular, half-corrugation model 
shown in Fig. 12(a). With internal pressure, a force 
component P per unit height acts in the 2-direction (see 

Fig. 9. The uniform block of dimensions t×2h, outlined 
by the broken lines, undergoes a shear deformation γs 

due to a shear stress P/t. From linear theory, P/t=γsE/3, 
in which E/3 is the shear modulus. Thus, due to this 
shear, the block displacement in the 2-direction 
becomes 
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Define the equivalent modulus E' for the block shown 
in Fig. 12(b), a uniform block of dimensions t×t. Under 
P, the uniform tensile load per unit height, the block 
extension is given by 
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When δs is equated to δu, the modulus ratio becomes 
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Equation (22) represents a lower bound on E/E' because 
the displacement defined for the corrugation was too 
low−it did not include bending deformations. Such a 
lower bound is helpful in torsion actuator designs with 
steep helix angles and with corrugation heights 2h of 
the same order of magnitude as the thickness t. Since 
these two features characterize the design example of 
Fig. 8, then Eq. (22) applies and E/E'=6(2.03)/2.54=4.8. 
The following experiments show that this modulus ratio 
does represent a lower bound value for this torsion 
actuator.  
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Table 1  Parameters for the torsion actuator model of 
Fig. 9: E=16.1 MPa, ν=0.5, t=2.54 mm, h=0.03 mm, 
R=12.7 mm, l=82.6 mm, and θ0 =70 degrees.  

 

 
Definitions  

 
Measurements          
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   4.3 Experimental Results. Consider the three 
nondimensional system parameters defined in Table 1. 
For each parameter, the quantity in parentheses was 
measured for the torsion actuator design of Fig. 8. 
  In the first set of experiments, the φ vs p data for the 
unrestrained actuator were found to be linear up to (φ,p) 
=(0.38 rad, 55 kPa), at which point the actuator began 
to balloon.  A least-squares linear fit of such data (18 
sets) gave φ/p=7.28 rad/Mpa, for which Π1 =3.60. 
Interpolation of the curves in Fig. 10 then gave and 
E/E'=7.1. 
   In the second set of experiments, the T vs p data for 
the actuator (restrained from rotation by torque T) were 
found to be linear up to (T,p) =(0.426 N⋅m, 62.0 kPa), at 
which point the actuator began to loose its basic shape. 
A least-squares linear fit gave T/p=6.90 N⋅m/Mpa, for 
which Π2 =3.37. Interpolation of the curves in Fig. 11 
then gave and E/E'=5.5. 
  In the third set of experiments, the φ vs T data for the 
unpressurized actuator were found to be linear up to 
(φ,T)=(0.209 rad, 0.226 N⋅m). A least-squares linear fit 
gave φ/T=0.966 rad/N⋅m, for which Π3 =0.980. 
Interpolation of the curves in Fig. 4 of Wilson and 
Orgill13) then gave and E/E'=8.5. 
   The results of these three types of experiments, 

which are summarized in Table 1, gave an average 
modulus ratio of 7.0±1.5. Such results serve to validate 
the orthotropic cylinder as a reliable model for a torsion 
actuator, and justify the use of Eq. (22) as a reasonable 
lower bound predictor of E/E'. 
 
5. BELLOWS FOR ROBOTIC ARMS 
   Shown in Fig. 13 is a string of Simrit Finger 
bending actuators forming a manipulator arm, with a 
gripper at the tip. The three types of actuators, labeled 
3,4 and 5 are 64, 92, and 130 mm long, respectively. At 
the fixed end, the largest actuators sustain the largest 
arm moments when the pressurized arm with a payload 
at the gripper is displaced from the vertical equilibrium 
position. The total length of the arm and gripper, 
including the connections, was 65 cm. The actuators are 
oriented so that out-of-plane motion can be achieved 
during object manipulation. Each arm actuator has its 
own air supply line, which is connected to a control 
module. The two opposing actuators of the gripper have 
a common air supply. Detailed descriptions of the 
electronic interfaces between the control module and 
the microcomputer that allowed for software control of 
the actuator pressure-time histories, are given by 
Wilson et al.12)  
 

 
Fig. 13. A string of bending bellows forming a robotic 
arm. 
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   A typical experiment for a pick-and-place maneuver 
is shown in Fig. 14, which depicts tracings of a 
photograph taken with stroboscopic light.13) At A, the 
gripper is pressurized and grasps a wood block. The 
arm actuators are selectively pressurized and 
depressurized to lift the block to avoid a collision with 
the lower shelf. Proceeding to points B,C,D,E, the 
block is then deposited on the upper shelf at F, and the 
arm returns to its near-vertical position. The whole 
maneuver was achieved in five seconds. 
  It was found that pulsing the pressure gave the 
smoothest arm motion. In repeated experiments for this 
maneuver, it was also found that the deviation of the 
placement point F from its target position on the upper 
shelf, was no more than nine percent. It was concluded 
that this open-loop control method is quite robust and 
practical in applications where high placement accuracy 
is not a priority.               

 
 
Fig. 14. Tracings of a stroboscopic photograph showing  
a typical maneuver of a robotic arm. 
 
 
6. BELLOWS FOR WALKING ROBOTS 
   Shown in Fig. 15 is a six-legged walking machine, 
in which each leg has two types of bellows actuators. 

The total length of each leg is 225 mm. Each leg is 
attached to a horizontal beam structure, which is 360 
mm long and 190 mm wide. The upper leg segment is 
the Simrit  Finger shown in Fig. 4. The lower segment 
is a neoprene extension bellows, to which was added an 
inner telescoping tube for lateral stability. An inner 
coaxial tension spring extends end-to-end so that the 
bellows are fully compressed when unpressurized. To 
suppress ballooning, this leg segment is contained in a 
tube of metal wire mesh. 

 
Fig. 15. Each leg of this six-legged walking machine 
has a bending bellows and an extension bellows. 
 
  Two forward walking gaits were investigated: fast 
and slow. For the fast gait, the two sets of legs, 
designated A-E-C and F-B-D in Fig. 15, had 
synchronized motions with a 180 degree phase 
difference. One of the two leg sets supported the robot’s 
body while the other set stroked forward. For forward 
motion control, only four pressurized tubes were 
needed. The fast forward speed was about 20 m/s.  
  For the slow forward gait, the three pairs of legs, 
designated B-F, C-E, and A-D, were driven at a 120 
degree phase difference. Four legs were always in the 
power stroke mode and two legs were in the reversion 
mode. To control the sequence, six pressurized tubes 
were needed. The robot was more stable at the slow 
walking gait of 10 m/s  than at the fast forward gait of 
20 m/s. 
  Steering, a derivative form of the fast forward gait, 
was realized by adding a slower than ordinary power 
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stroke to an active leg set. For instance, to steer the 
robot to the left, a slow power stroke was imposed on 
leg B of set F-B-D, during which slow power strokes 
were imposed alternatively on legs A and C of set 
A-E-C. Such stroke sequences produced a velocity 
difference between the right and left sides of the robot, 
and hence a steering motion. Typically, the steering 
radius was 1200 mm, in which the angular velocity was 
about one degree per second. 
   Pure rotation, the special case of zero steering 
radius, was realized by changing the same legs that 
exhibited slow power strokes in steering to legs that 
were motionless, and thus acted as pivots. With just two 
such legs in the static pressure state, the flexibility of 
the leg elements allowed for body rotation, which was 
typically about 0.3 degrees per second. 
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