An investigation of a learning system

with a mobile robot

Alan H. Bond ! and David H. Mott,
Artificial Intelligence Laboratory,
Queen Mary College, University of London
Mile End Road, London E1 4NS, England

LCurrent address: Computer Science Department, 4173C Engineering 1, University of California, Los

Angeles, California 90024 email: bond@cs.ucla.edu

Abstract

A learning system is described. It was applied to a concrete learning situation of a
mobile robot in a simple environment.

Knowledge was represented as rules called schemas, which predicted future sensory
and motor events. Each rule had certainty values for its constituents and a confidence
for the entire rule.

The system consisted of Prediction, Behavioral and Learning subsystems. Pre-
diction used schemas in a bottom-up manner to generate a list of predicted events.

Behavior had three separate mechanisms for generating actions.

o (oal seeking behavior used schemas in a top-down manner to seek or to avoid

primitive <HIGH> or <LOW > events.

e FEzxploratory behavior generated actions that were predicted, although not neces-

sarily sought.
e Random behavior occurred in the absence of any prediction or goal.

The system was primed with a small set of innate schemas.

The Learning subsystem created new schemas from events that occurred, and mod-
ified existing schemas according to their success in prediction.

A learning session is described, in which the system autonomously learnt enough

schemas for the mobile robot to survive in its environment.

1 Introduction

There are a number of reasons to regard sensory-motor learning as a basis for intelligence,
and therefore to be of greater interest than other forms of learning. A few attempts have been
made to study learning in sensory-motor environments, for example Jones [1], Friedman [2],
Doran [3], Uhr and Kochen [4], however these have in the main been confined to simulated
environments. Some have used real robots, for example Fikes, Hart and Nilsson [5], Andreae

[6] and Raibert [7]. For an early but insightful review, see Ernst’s paper [8].

The work described here used a simple but real mobile robot. The robot was the Queen Mary
College Mark IV Experimental Robot and is shown in Figure 1. C. Mark Witkowski devel-
oped the robot hardware, both mechanics and electronics. The Mark IV robot is described

by Witkowski [9] [10] and Bond [11].

The learning system took Becker’s Model of Intermediate Cognition [12] [13] as its starting

point, and developed and modified it considerably.

The work was funded by the Science Research Council, Computer Science Committee. The
project was entitled ” Learning in a Mobile Robot”. Alan H. Bond was principal investigator
and supervisor. The software was developed by David H. Mott. Further discussion may be
found in the Final project report to the Science Research Council [14] and in Mott’s Ph.D.
thesis [15].

2 The robot and its environment

The robot was a simple vehicle, shown in the photograph and diagram, Figures 1 and 2.
Although the robot had many sensors including sonar and also touch bars on all four sides,
for the purposes of this study only a few sensors were used, and their ranges were cut down

to a small number of values corresponding to intervals of their usual detected values.

-
]
I
1
L
"
1
i
13
i3
-

Figure 1: Photograph of the robot

UMBILICAL

BINARY
CAMERA
[
CHARGING
PLATE
]

PHOTOCELLS oo
onNAR|
TOUCH '

BARS —

Figure 2: Diagram of the robot

Figure 3 shows a photograph of the robot in its environment and Figures 4 and 5 are diagrams

of the external environment and internal environment.

Figure 3: Photograph of the robot in its environment

<FRONT>S / /\\

<BRIGHT>S

<FRONT>S
<FRONT>S

<FRONT>S

Figure 4: Diagram of the environment - The spatial and external sensor environment

battery %
level

<FULL>S

<HUNGRY>S
<LOW>S AN

Vo

time

Figure 5: Diagram of the environment - The energy and internal sensor environment

Figure 6 gives what we call the movement environment, or the primitive movements and

their effects on the spatial state of the robot.

#§<F0RW>M

]

=
<BACK>M

@ <RIGHT>M

o

©

Figure 6: Diagram of the environment - The movement environment

? <LEFT>M

The computer system used is diagrammed in Figure 7.

ICL 19045
RUNNING
MAXIMOP
OPERATING SYSTEM
USER PROGRAM IN
POP-2

PDP-11

CONSOLE

ONBOARD
LOGIC

Figure 7: Diagram of the computer system

10

Sensor or Motor | Kernels used | Significance

Photocells <Bright>S | Value > threshold

Touch Bars <Front>S Front touch bar activated

Battery <Full>S Battery fully charged

Level <Hunger>S | Battery getting low or

Sensor dangerously low
<Low>S Battery dangerously low

Oncharge <Charge>S | Battery being charged

Internal software | <High>S Predicted pleasure

Motors <Forw>M Move robot a few inches forward
<Back>M Move robot a few inches backward
<Left>M Rotate robot about 10 degrees right

<Right>M | Rotate robot about 10 degrees left

Bleeper <Cry>M Bleep Morse code for SOS

Figure 8: I/O vocabulary, kernels, used

3 Elements of the system
Kernels The interface of the system to the robot was by means of a set of symbolic atoms,
which following Becker we called ”kernels”. We use his notation using <> brackets and with

a following S or M to denote a sensory kernel or motor kernel. The set of kernels used in

this study is shown in Figure 8.

11

The system received a stream of sensory kernels from the robot, i.e., from a software interface

to the robot hardware.

<BRIGHT>S occurred when the photocell gave a value greater than a threshold.

<FRONT>S occurred when the front touch bar was activated.

<FULL>S occurred when the battery was fully charged.

<HUNGER>S occurred when the battery was getting low.

When the battery was getting ” dangerously ” low, the kernel <LOW>S was produced as
well as <HUNGER>S.

If the battery level was normal, i.e., between full and low, then no kernel occurred.

When the battery was being charged, by being connected to a charger, the kernel
<CHARGE>S occurred.

The system generated a stream of motor kernels, which were commands to the robot.

<FORW>M moved the robot a few inches forward

<BACK>M moved the robot a few inches backward

<LEFT>M rotated the robot about left 10 degrees about its center

<RIGHT>M rotated the robot about right 10 degrees about its center

<CRY>M bleeped the Morse code for SOS

The original notion of kernel in Becker’s work was similar to a literal i.e. it had a function

12

and value
<RANGE 12>
<COLOR RED>

etc.

involving a variable value. Our implementation reduced this to atomic symbols on the
grounds that the Becker form gave too much initial structure as a starting point for learning,

and also because it was an extra complication in an already complicated system.

3.1 Short term memory - STM

The stream of kernels both input and output flowed into a single infinitely long queue, an
item in the queue was the set of kernels occurring in one discrete time interval, together with

the (integer) value of the time, see Figure 9.

13

MOTOR KERNELS

ST : ?/ké ROBOT

SENSORY KERNELS

TIME

AY
K4

EVENT is a set of kernels occurring in a given time slot
e.g. { <CHARGE>S <FRONT>S } ‘

EVENT SEQUENCE is a temporal sequence of events in successive time slots
E1 -> E2 -> -> E3

SCHEMA is a knowledge unit which, given the occurrence of a particular
event sequence, predicts the future occurrence of an event sequence.

SCHEMA EVENT SEQUENCE => SCHEMA EVENT SEQUENCE
SCHEMA EVENT SEQUENCE is a temporal sequence of event estimates of the form

(<KERNEL> <CERTAINTY FACTOR>) (<KERNEL> <CERTAINTY FACTOR>)

SCHEMA has a confidence measure, more exactly

(SCHEMA EVENT SEQUENCE => SCHEMA EVENT SEQUENCE) <CONFIDENCE>

Figure 9: Short term memory, events and schemas

14

The system operated on a discrete time scale in cycles lasting one unit of time, and strictly
alternated between motor output and sensory input. Thus in any one time unit or slot,

either only sensory kernels or only motor kernels were present.

Becker suggested a finite short term memory and he had relevance levels attached to kernels

but no times attached. He did not have our alternation of cycles.

We called a set of kernels occurring in one time slot an event.

e.g. E1 <CHARGE>S <FRONT>S

An event could of course be empty, the empty event will be denoted by the null string.

The contents of STM is an event sequence and temporal adjacency will be denoted by ” — >

”

eg. E1 —>E2 —>—>E3

The current time will be denoted ” ¢t ”.

3.2 Schemas and the Model

The central data structure was the ”model” which was an unordered set of schema. Schema
were rules which made predictions about what was likely to happen in STM and therefore

in the environment. A schema had the form

event sequence => event sequence

and its intended meaning was that if the left hand side occured then the right hand side

was predicted to happen in the future. More specifically, if the left hand side matched the

15

contents of STM, this event sequence was said to occur. Then the right hand side was

predicted to occur starting in the next time slot.

The schemas were uncertain, both in their construction and in their validity. Each kernel
in the schema had a certainty factor, which was a measure of how certain the system was
that the kernel should be present in the schema. This certainty factor of a kernel on the
left hand side of a schema we called its relevance, and the certainty factor of a kernel on the
right hand side we called its certainty of occurrence. Each schema had an overall certainty
factor, which gave a measure of how certain the system was that the schema gave a correct

prediction of what happened in STM. We called this its confidence.

Thus a schema event sequence, either a left hand side or a right hand side, actually had the

form

(kernel, certainty factor) (kernel, certainty factor) . .

and a schema was of the form

(schema event sequence => schema event sequence) confidence

Certainty factors were real numbers in the range [0.0, 1.0]. They were not probabilities,
since they did not add up to 1.0 and did not combine like probabilities. We used an ad hoc

theory of certainty.

3.3 Negated kernels

Negated kernels were also used, denoted - <kernel>. A negated kernel represented the

absence of that kernel in the current time slot, and was placed there by the system if it had

16

been predicted to occur and didn’t.

Negated kernels were used in all the mechanisms of the system with appropriate treatment.

They could for example be parts of schemas.

They also gave a natural representation for the goal of avoiding a given kernel or set of

kernels.

3.4 Prediction

We regarded prediction and behavior as distinct processes. Prediction was taken to be the
bottom-up generation of strings of kernels using the model and producing a lookahead tree.
” Behavior ” was the top down generation of subgoals using the model, and the stream of

motor produced.

The system behaved by trying to avoid <LOW?> and trying to achieve <HIGH>. <HIGH>
and <LOW> were special experiential kernels corresponding presumably to primitive plea-

sure and pain. This was our theory of motivation.

Prediction affected behavior in several ways. It focussed attention on likely events in the
future to seek or to avoid. It enabled the evaluation of a proposed plan of action. It also
was used in our system for generating explicit negative kernels representing the absence of

an expected or predicted event.

Apart from its role in behavior, prediction was used for learning, that is updating the model
in the light of experience. The predictions of the model were compared with the actual

events and the learning system updated the model accordingly.

17

The prediction system and prediction process are depicted in Figures 10 and 11. In a
conventional fashion, left hand sides were matched to the contents of time slots in STM,
starting from the current time slot, and anchored to it. This produced a prediction tree of

all lines of prediction from the application of all applicable rules.

18

MODEL
SCHEMAS

Y

PREDICTION predictions
SYSTEM
STM
sensory
kernels

Figure 10: The prediction system

19

[<A>S > => S]
(<A>S => => <C>8)
[S <C>8 -> => <D>S]

TIME LHS PREDICTION

ct - <A>S

ct+1 - S

ct+2 ‘ S <C>§ S
<C>S

ct+3 c——- ‘ ——

ct+y <D>$

Figure 11: Prediction - The prediction process

20

For example, as shown in Figure 12, if we have the schema set shown and the kernel <A >
occurs, then the prediction tree would be as shown. That is S1 predicts and S2 predicts
<C>; from and S3, we predicted <D> if <C> occurred and from <C> and S3, <D>

is produced if occurs.

<A>

 <C>

[<C>] [<C>]

<D> <D>

Figure 12: Prediction - A prediction tree

The predictions occurred with calculated certainty factors, and further second order predic-
tions have multiplied certainty factors. Prediction lookahead was produced until a threshold

of certainty was reached. A predicted kernel had a certainty and a time of occurrence.

Instead of producing a prediction tree, the prediction system produced a prediction queue.
This was because of

1. The composite and overlapping nature of predicted events

21

2. The prediction used being only of the existence of a kernel independent of context.

The prediction queue shown in Figure 13 corresponds to the prediction tree shown in Figure

12.

ct cte ct+2

<A>S S <C>S

Figure 13: Prediction - A prediction queue

ct+3

ct+l
<D>S

A prediction queue was simply a queue of time slots starting with the current time and

going into the future. In each slot were the kernels predicted to occur in that time slot. Also

stored in each slot, for the purposes of the learning system, were the left hand sides of the

schemas making predictions in that time slot. The predictions made by a schema would be

in the next and subsequent time slots. Linking information was held indicating which of the

predicted kernels were predicted by which predicting left hand side.

The calculation of certainty factors was as follows. If we had a prediction of kernel <A>

with certainty p and a subsequent prediction by a schema of the form

[<A>pa .. => pb] ¢
then was predicted with certainty

p*c*pb

22

The relevance pa of <A> in the schema entered the calculation only indirectly. A schema
was only used to make a prediction if the relevances of the unmatched kernels were less than

a threshold and no more than one kernel was missing in the match of LHS to STM.

In the first time slot, ct, the certainty p of predicted kernels which actually were occurring

in STM was 1 and those not occurring was 0.

The prediction queue also held information about the current match of STM to the currently
predicting left hand side. Those kernels in the currently predicting left hand side at time ct,
which matched a kernel in STM in the corresponding time slot were tagged as matched. The
notation we use for the tag is ”*”. One STM kernel could match more than one predicting
left hand side kernel in one cycle. The predicted kernels in the slot were also matched against
STM and tagged if they occurred. In this case an STM kernel could only match one predicted
kernel. If there was more than one possible matching kernel, the one with highest predicted

certainty of occurrence was tagged.

The prediction queue thus stored all the information that the learning system needed about
the predictions. The learning system operated upon the tagged schemas, i.e. those containing

tagged kernels, and also, as a special case, completely untagged schemas.
The operation of the prediction system in each time unit was as follows:
() Shift the entire prediction queue up one place.

(ii) Obtain next STM.

(iii) Place negated kernels into STM in ct slot.

(iv) Tag predicting and predicted kernels.

23

(v) Match STM against model and put any new predictions into the slots.
(vi) Pass any completed tagged or completely untagged schemas to the learning system.

(vii) Repeat from (i).

4 Behavior

There were four mechanisms:

1. Random movement, in the absence of any stimulus or prediction.

2. Innate refleres, which formed the initial state of the model, and could provide such

functions as backing off if too close or accomodation of dynamic ranges etc.
3. Ezxploratory behavior, of following predicted actions, if no goals currently existed.

4. Goal seeking behavior, in seeking <HIGH> or avoiding <LOW>, if these were pre-

dicted.

4.1 Random Movement

Purely random movement turned out to be not very useful, as the robot had little chance
of moving very far away from its initial position. Indeed the probability of moving away a

distance x is proportional to 1/x2.

Simply moving forwards was also tried, but to no avail.

24

4.2 Innate reflexes

The backoff reflex impeded progress in that the main learning experience of ” feeding ”, i.e
battery charging, required the robot not to back off. We actually used one reflex only with
the opposite effect, namely to push forward against any stimulus received from the front

touch bar.

Innate reflexes were subject to learning and could be modified as a result of experience. In

the context of this system, they were not really innate reflexes so much as innate predictors.

4.3 Exploratory Behavior

If there were no current attractions or threats, the system would explore as follows. If any

motor kernels were predicted, these would be executed. Thus, if we had
[<A>S — > <M>M => <C>S]

and if <A>S occurred in STM, then <M>M would be predicted for the next time slot and

executed.

Y

This mechanism tended to test out schemas by repeating or ” exercising ” them.

If there were no predicted motor kernels then random movements were made.

4.4 Goal Seeking Behavior

A goal was a set of kernels that the system sought to happen. They had to all occur, and as

goals currently used by the system had an explicit time of occurrence, all kernels in the set

25

had to occur in the specified time slot.

Goals were initiated by the prediction system finding a predicted <HIGH>S or <LOW>S
at some future time. A goal that the system wished to achieve lead the system to chain
backwards from the goal using the schemas of the model. These subgoals had specified time

slots, and the chain was pursued until it reached the current time slot.

A predicted <LOW>S was to be avoided. Its backward chain produced the negated kernels

of the predicting left hand side.

Thus we had a goal structure derived from the prediction queue and consisting of not a goal

tree, Figure 14, but a goal queue, Figure 15.

<HIGH>

<A>S | M

7\

<C>S <D>M

Figure 14: Behavior - A goal tree

This was a queue of time slots, each slot containing the kernels the system wished to achieve

at that time. Each goal kernel had a priority, determined from the certainty of occurrence

26

ct cte+d

<C>S

of its originating top goal, and its relevance in predicting that top goal.

ct+2
<D>M

ct+3
<A>S

ct+l h ct+d

M

Figure 15: Behavior - A goal queue

<HIGH>

The goal structure might have needed updating in each time unit, and was thus continuously

revised and updated.

The system chose, from amongst the goal motor kernels in the current time slot, that motor

kernel with the highest priority and executed it, producing goal seeking behavior.

Figure 16 shows the prediction and behavioral systems together.

27

MODEL

SCHEMAS
goals
BEHAVIORAL L
SYSTEM
A
Y
PREDICTION predictions
SYSTEM -
s™M [
Vmotor
sensory kernels
kernels

Figure 16: Prediction 4+ Behavioral systems

28

5 Learning
This occurred in three ways:

1. Schema Creation
2. Adaptation of certainty factors of existing schemas

3. Differentiation of existing schemas

5.1 Schema creation

If unpredicted kernels occurred in STM, then a new schema was created using these kernels
as the right hand side and using the kernels from ct-1 and ct-2 as the left hand side. This is

shown in Figure 17. The initial values of all the certainty factors were 1.

TIME ct-2 ct-1 ct
STM <A>S S <M>M <C>S <D>S
NEW SCHEMA [<A>S S -> <M>M => <C>S <D>S]

Figure 17: Schema creation

29

5.2 Adaptation of certainty factors of existing schemas

This used a tagged schema from the prediction system i.e. one that had matched to STM.
Adaptation was performed only if the left hand side of a schema partially matched to STM,
that is if all but one of the left hand side kernels matched to STM.

We first examined the right hand side to see whether the prediction succeeded or failed. It
was taken as succeeding if at least one right hand side kernel matched and if also the average
certainty of occurrence of any kernels not matching was less than a threshold, (usually 0.4).

Otherwise it failed.

The certainties were only adjusted when one left hand side kernel was missing from STM.

They were simply recalculated from the formulae shown in Figure 18.

LHS Kernels (KX): No.of times K absent and prediction failed

No. of times K absent and prediction failed or succeeded

RHS Kernels: No. of times prediction of X succeeded

No. of times K predicted
Confidence: 1/2 (LHS contribution + RHS contribution)

LHS contribution = Sum over 1lhs kernels of no of times K absent

RHS contribution = Sum over rhs kernels of no of times prediction succeeded

Figure 18: Updating certainty values of an existing schema

When a kernel, or an entire schema, had a very small certainty factor less then a threshold,

it was deleted.

30

Note that we had to store the accumulated values of:

—_

. Number of times each kernel was absent and the schema’s prediction failed

Number of times each kernel was absent and the schema’s prediction failed or succeeded
Number of times the prediction of a each kernel succeeded

Number of times each kernel was predicted

Number of times each kernel was absent

> o oA W N

Number of times each prediction of the right hand side of each schema succeeded

5.3 Differentiation of existing schemas

Kernels were never added to the right hand side of a schema, but could be added to the left
hand side. This happened in the case that the certainty factor of the right hand side tended

to a stable value which was neither 0 nor 1, indicating an insufficiently specified context by

the left hand side.

The mechanism of differentiation was to try adding new detail from an event in STM. An

example is shown in Figure 19.
The certainties of the new kernels were initially 1.

It was intended that the differentiated kernel was tentative and that if the newly added
kernels did not increase the certainty of occurrence of the right hand side then they should

be removed. Whether they would automatically ”wash out” by adaptation was not clear.

We show, in Figure 20, a diagram of the total system, with all three subsystems - Prediction,

Behavior and Learning.

31

If [<A>S -> M => <C>S] present in model
and {f

<X>S => <Y>M -> <A>S -> M -> <C>S occurs
then

the schema is differentiated to

[<X>8 => <Y>M -> <A>S -> M => <(C>S]

Figure 19: Differentiation of an existing schema

32

MODEL Lo LEARNING
SCHEMAS - SYSTEM
BEHAVIORAL |goals
SYSTEM
A
Y
PREDICTION predictions
SYSTEM
STM [
Y
sensory motor
kernels kernels

Figure 20: Diagram of total system = Prediction + Behavior + Learning

33

6 An Example

6.1 What was learnt

Our main example of learnt behavior is diagrammed in Figures 21 and 22. The robot
was given one innate schema as shown, which caused it to push forward against a front
touch stimulus. In its initial condition, it would exhibit the behavior depicted viz. random
movements mainly. If it touched an object it would tend to push forward. As a result of
the learning session, the system autonomously acquired a set of schema which enabled it to

predict its environment.

34

BEFORE LEARNING 39

RANDOM TENDENCY TO
MOVEMENTS PUSH AGAINST
// ANY
/ OBJECT
/

/

AFTER LEARNING

WILL FIND LIGHT WHEN HUNGRY

PUSH IF m

ON CHARGE
CHARGER
PLATES
SCAN TO _ -
FOLLOW

FIND LIGHT 2

Figure 21: An example of learning - Spatial diagrams

35

Innate schema:

[<FRONT>S -> <FORW>M => <HIGH>S]

Learnt schema:
[<HUNGER>S -> => <HUNGER>S]
[<HUNGER>S -> => <LOW>S]
[<RIGHT>M => <BRIGHT>S]
[<BRIGHT>S -> <FORW>M => <BRIGHT>S]
[<CHARGE>S -> <FORW>M => - <HUNGER>S]
[<CHARGE>S <FRONT>S <HUNGER>S <BRIGHT>S -> <FORW>M => - <HUNGER>S]

Figure 22: An example of learning - Schemas learnt

The full set of schema learnt consisted of about 15 schema. We show in the figure the main
ones that caused behavior. The effect of the learnt schemas was that the system had learnt
to find the light and to charge its batteries when it was hungry. This involved learning quite

a lot about its environment both internal and external.
The innate schema was

[<FRONT>S — > <FORW>M => <HIGH>S |

The system learnt

1. [<HUNGER>S — > => <HUNGER>S |

i.e. hunger tends to persist.

36

2. [<HUNGER>S — > => <LOW>S |

i.e. hunger tends to (eventually) produce pain.

3. [<RIGHT>M => <BRIGHT>S |

i.e. scanning behavior, if you turn or "scan” to the right, you (sometimes) see the light.
4. [<BRIGHT>S — > <FORW>M => <BRIGHT>S |

i.e. light beam following, if you see the light and move forwards, you (often) still see the

light.
5. [<CHARGE>S — > <FORW>M => -<HUNGER>S |

i.e. discriminating pushing behavior unit, if you are on charge and push forwards, you will

(eventually) alleviate hunger. In fact the system also learnt the more complex form

6. | <CHARGE>S <FRONT>S <HUNGER>S <BRIGHT>S — > <FORW>M => -
<HUNGER>S |

All of these items of information about the environment were needed before the robot could

survive.

6.2 The learning session

We give here an annotated trace of the entire learning session.

TIME DESCRIPTION SCHEMA NUMBER

1 Memory loaded with the innate schema

37

(1
13)

14

16

(17

30)

31

34

36

[<FRONT>S -> <FORW>M => <HIGH>S] (1
Robot not hungry

Random movements made

The light was encountered, <BRIGHT>S occurred
unpredicted, hence schema created

[<LEFT>M => <BRIGHT>S] (2)

<BRIGHT>S again occurred unpredicted, creating

[<BRIGHT>S -> <FORW>M => <BRIGHT>S] (3)
Motor kernel <FORW>M now involved in predictions, hence
exploratory behavior occured. This caused <FORW>M s to
be executed along the light beam. This increased the

certainty of occurrence of the right hand side of (3),
but didn’t affect its left hand side.

Robot hit charger obliquely, <FRONT>S occurred,
This was unpredicted and so a schema was created
[<BRIGHT>S -> <FORW>M => <FRONT>S 1] (4)

(1) was also activated, executing another <FORW>M.

Another <FORW>M executed, <FRONT>S no longer occurring
but <BRIGHT>S still occurring.

<FORW>M, due to exploration.

38

38

40

(40
56)

56

61

81

(81
94)

<RIGHT>M executed, still no <FRONT>S however.

<FORW>M executed, <BRIGHT>S lost.

Random <BACK>S put robot away from the charger.

Schema were now

<BRIGHT>S 1.0 -> <FORW>M 0.75 => <FRONT>S 0.75] 0.27 (4)
<BRIGHT>S 1.0 -> <FORW>M 0.5 => <BRIGHT>S 1.0] 0.67 (3)
<FRONT>S 1.0 -> <FORW>M 1.0 => <HIGH>S 0.83] 1.0 (1)
The innate schema was of course subject to adaptation

and in this example would die away completely, eventually.

Found light <BRIGHT>S occurred, <FORW>M and <LEFT>M
executed, lost light again.

Found light It had just made a random right movement and
created the schema

<RIGHT>S => <BRIGHT>S] (5)

Executed <FORW>M and <LEFT>M and lost the light again.
Schema (3) and (4) were now

[<BRIGHT>S 1.0 -> <FORW>M 0.8 => <FRONT>S 0.63] 0.45 (4)

[<BRIGHT>S 1.0 -> <FORW>M 0.6 => <BRIGHT>S 1.0] 0.75 (3)

39

95

(95
108)

113

115

160

167

204

Found light, created

<BACK>M => <BRIGHT>S] (6)

<FORW>M and <LEFT>M commands executed, lost light again.

<HUNGER>S occurs, creating

[<RIGHT>M => <HUNGER>S] €]
[<HUNGER>S -> <BACK>M => <HUNGER>S] (8)
created.

<BACK>M in (8) eventually washed out by irrelevance in
successful predictions, giving

[HUNGER>S -> => <HUNGER>S] (8)
(4) was now
[<BRIGHT>S 1.0 -> <FORW>M 0.86 => <FRONT>S 0.6] 0.52 (4)

(3) as before.

<LOW>S occurred, creating

[<HUNGER>S -> <LEFT>M => <LOW>S] (9)

<LEFT>M in (9) washed out, giving

[<HUNGER>S -> => <LOW>S] (9)

40

Note that without <HUNGER>S being produced together with
<LOW>S, this would have had a much lower certainty, and
taken much longer to form.

207 Model was now
[<FRONT>S 1.0 -> <FORW>M 1.0 => <HIGH>S 0.83] 1.0 (1
[<LEFT>M 1.0 => <BRIGHT>S 0.09] 0.15 (2)

[<BRIGHT>S 1.0 -> <FORW>M 0.6 => <BRIGHT>S 1.0] 0.75 (3)

[<BRIGHT>S 1.0 -> <FORW>M 0.86 => <FRONT>S 0.6] 0.52 (4)

[<RIGHT>M 1.0 => <BRIGHT>S 0.05] 0.1 (5)
[<BACK>M 1.0 => <BRIGHT>S 0.06] 0.1 (6)
[<RIGHT>M 1.0 => <HUNGER>S 0.08] 0.1 (7
[<HUNGER>S 1.0 -> => <HUNGER>S 1.0] 0.55 (8)
[<HUNGER>S 1.0 -> => <LOW>S 1.0] 0.1 (9)

Due to a restart the robot was no longer hungry.

(211 <RIGHT>M executed, found light, did <LFT>M and lost it,
224) <RIGHT>M again found light, <LEFT>M kept it,
<FORW>M executed.

225 <FRONT>S occurred.

228 <PUSH>S, <CHARGE>S occurred, created the schema

[<FRONT>S -> <FORW>M => <FRONT>S <CHARGE>S] (10)

41

(229 Continued executing <FORW>M commands, maintaining
258) <FRONT>S and <CHARGE>S, but not <BRIGHT>S, since
at edge of charger. Schema (1) and (10) were altered to
[<FRONT>S 1.0 -> <FORW>M 1.0 => <HIGH>S 0.37] 1.0 (1)
[<FRONT>S 1.0 -> <FORW>M 1.0
=> <FRONT>S 1.0 <CHARGE>S 1.0] 0.55 (10)
259 <FORW>M executed, <CHARGE>S but not <FRONT>S occurred.
260 <FORW>M executed, <FRONT>S occurred.
(261 Continued executing <FORW> commands, schema (1) and (10) were now
332)

[<FRONT>S 1.0 -> <FORW>M 1.0 => <HIGH>S 0.16] 1.0 ¢D)

[<FRONT>S 1.0 -> <FORW>M 1.0
=> <FRONT>S 0.98 <CHARGE>S] 0.55 (10)

The certainties of (8) and (9) were artificially altered by
increasing their confidences:

[<HUNGER>S -> => <HUNGER>S] 0.55 (8)
[<HUNGER>S -> => <>$ 1.0] 0.35 (9)
This was to allow the prediction of <LOW>s to be sufficiently
certain to evoke goal seeking behavior. If the robot had

been still hungry (as it should have been) on restart at 207,
this wouldn’t have been necessary.

333 Restart with robot very hungry, near the charger and in the
light beam.

335 <FORW>M executed.

42

(337 <RIGHT>M executed, still in beam, touched charger,
338) <HUNGER>S, <LOW>S, <FRONT>S and <BRIGHT>S occurred, but
not <CHARGE>S. <FORW>M executed.

339 <HUNGER>S, <BRIGHT>S, <CHARGE>S and <FRONT>S occurred.
As <BRIGHT>S not predicted, create the schema

[<HUNGER>S <LOW>S <BRIGHT>S <FRONT>S -> <FORW>S
=> -<HUNGER>S 1 (12)

347 <BRIGHT>S not predicted, createds

[<CHARGE>S <BRIGHT>S <FRONT>S <HUNGER>S -> <FORW>M
=> <BRIGHT>S] (13)

(348 Certainty of (12) rose slowly, certainty of (13) fell.
361)

The model was now sufficient to find the light and to charge the batteries, when hungry.
(12) is discriminating pushing

(5) is scanning

(3) is light beam following

(8) is hunger persistence

(9) is hunger predicts pain.

43

7 Discussion

Although based upon the original Becker model, substantial modifications and improvements

have been introduced in our system.

Some changes were made in order to make the basic mechanisms work:

1. The prediction system was separated out as a separate, and parallel mechanism.

2. Negated kernels were introduced to represent the absence of a kernel. This was needed
to compare with the prediction of the kernel in a given time slot. It also allowed the

representation of avoidance of a given event, and the derivation of avoidance subgoals.

3. The creation mechanism for new schema was introduced. This was designed in a
fairly conservative manner, but was found to be effective for the class of learning tasks

investigated.

There were also major modifications and extensions, going beyond Becker’s conception:

1. The motivational theory of the system, using primitive pleasure and pain events was

introduced.
2. An ad hoc theory of uncertainty was developed.

3. Time ordering of events, predictions and goals was made into a precise discrete scale of
time slots. This method of representation is potentially cumbersome, however it was
very powerful in controlling the proliferation of predictions, in pruning unwanted and

out of date goals, and in evaluating the predictive power of schemas.

44

This work has allowed the investigation of a very fertile area, namely learning systems in

relation to mobile robots. Among the many questions arising, we mention the following:

1. How can this type of representation represent geometric concepts and objects? It was

developed as a compromise to allow learning mechanisms to function.
2. Can we understand its representational ability in terms of formal language?
3. Can we extend the theory of grammatical inference to this system?

4. What classes of schema can be learnt using these learning mechanisms? Are there clear
counterexamples of learning problems that this type of representation and learning

mechanism cannot handle?

5. Does the need to learn in a proliferation of predictions force a linearisation of the basic
structures, such as the goal and prediction queue, or can this be controlled in a more

general way?

Acknowledgements

We should like to thank Mark Witkowski for designing and building the robot, and Roger
S. Brown, for system support to the project, both of the Artificial Intelligence Laboratory,
Queen Mary College. This project was supported by the Science and Engineering Research

Council.

45

References
[1] T. L. Jones. A computer model of simple forms of learning. Technical Report MAC-
TR-20, AD-720-337, Massachusetts Institute of Technology, 1971.

[2] L. Friedman. Instinctive behavior and its computer synthesis. Behavioral Science,

12:85-108, 1967.

[3] J. E. Doran. Experiments with a pleasure-seeking automaton. In Machine Intelligence,

volume 3, pages 195-216, 1968.

[4] L. Uhr and M. Kochen. Mikrokosms and robots. In International Joint Conference on
Artificial Intelligence, pages 541-555, 19609.

[5] R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and executing generalised robot
plans. Artifical Intelligence Journal, 3:251-288, 1972.

[6] J. H. Andreae. Thinking with the teachable machine. Academic Press, New York, 1977.

[7] M. H. Raibert. Mechanical arm control using a state space memory. Technical Report

MS77-750, Soc Mfg. Engrs., 1977.
[8] H. A. Ernst. Computer controlled robots. Technical Report RC2781, IBM, 1970.

[9] C. M. Witkowski. Mark 4 Robot Manual. Technical report, Artificial Intelligence
Laboratory, Queen Mary College, London, 1979.

[10] C. M. Witkowski. Introduction to robotics. Practical Computing, February - August,
1980.

[11] Alan H. Bond. Fast Vision for a Low Cost Computer Controlled Robot. In On Theory
and Practice of Robots and Manipulators edited by Morecki A. and Kedzior K, Proceed-
ings of 2nd CISM-IFToMM Symposium, P.W.N., Warsaw, 1976.

46

[12] J. D. Becker. An information processing model of intermediate-level cognition. PhD

thesis, Stanford University, 1970. Artificial Intelligence Project, AI-119.

[13] J. D. Becker. A model for the encoding of experiential information. In R. C. Schank
and K. M. Colby, editors, Computer models of thought and language, pages 396-434.
W.H.Freeman, San Francisco, 1973.

[14] A. H. Bond and D. H. Mott. The investigation of learning in a mobile robot. Technical

Report Final Report, Science Research Council, 1981.

[15] David H. Mott. Sensory-Motor Learning in a Mobile Robot. PhD thesis, London Uni-

versity, 1981.

47

Contents

1 Introduction

2 The robot and its environment

3 Elements of the system

3.1 Short term memory - STM Lo L

3.2 Schemas and the Model

3.3 Negated kernels Lo

3.4 Predictiono e

4 Behavior

4.1 Random Movement

4.2 Innate reflexes L

4.3 Exploratory Behavior o000 L L

4.4 Goal Seeking Behavior oL 0oL

5 Learning

5.1 Schema creation L e

48

11

13

15

16

17

24

24

25

25

25

29

5.2 Adaptation of certainty factors of existing schemas 30

5.3 Differentiation of existing schemas 0 o0 31
6 An Example 34
6.1 What was learnt oo 34
6.2 The learning session e 37
7 Discussion 44

49

List of Figures

10

11

12

13

14

15

16

Photograph of the roboto o L 4
Diagram of the robot L o 5
Photograph of the robot in its environment 6
Diagram of the environment - The spatial and external sensor environment, . 7
Diagram of the environment - The energy and internal sensor environment . 8
Diagram of the environment - The movement environment 9
Diagram of the computer system 0 L. 10
I/O vocabulary, kernels, used 11
Short term memory, events and schemas 14
The prediction system 19
Prediction - The prediction process 20
Prediction - A prediction tree 21
Prediction - A prediction queue 22
Behavior - A goal tree 26
Behavior - A goal queue L 27
Prediction + Behavioral systemso 28

17

18

19

20

21

22

Schema creation e 29

Updating certainty values of an existing schema 30
Differentiation of an existing schema 32
Diagram of total system = Prediction + Behavior + Learning 33
An example of learning - Spatial diagrams L. 35
An example of learning - Schemas learnt 36

o1

