Posts Tagged ‘Pneumatic Robot’

1976 – Pneumatic Exoskeleton Prosthesis – Pierre Rabischong (French)

Revolutionizing Techniques of Orthosis and Prosthesis
Professor Pierre Rabischong of the Montpellier Propara Centre watches as a female patient and her physical therapist use a machine developed by Professor Rabischong. This machine allows the patient in rehabilitation to maintain her balance while inciting her muscles to move. The system functions according to the master-slave concept. The physical therapist makes the movements first and the machine transfers them to the patient's machine, who then follows.
Stock Photo ID: 42-17253903
Date Photographed: 01 September 1983
Credit: © Eric Preau/Sygma/Corbis

Figure 4.4.2.(2) Active modular orthesis for lower limbs (OMAMI) (Rabischong, INSERM, France, 1983): 1 and 2, potentiometers for the master orthesis, worn by the patient; 3 and 4, slave hydraulic actuators for the patient. Contention on the segments is ensured by the presence of inflatable pieces reinforced with strips of composite material (carbon fibre). The hydraulic system was produced by Renault, the orthesis by Aerazure. The kinematic walking model, developed by the Automation and Microelectronics Laboratory, Montpellier (LAMM) is intended to be used and to give the
patient greater autonomy. Photo courtesy of INSERM ASSISTED WALKING
Following on from the work of Tomovic the Yugoslav, Rabischong applied the problem of assistance to those with paralysis of the lower limbs using a motorized orthesis. His original idea (Rabischong et al., 1978; Hill, 1976-1) consisted of controlling the orthesis by unilateral positional servocontrol using two exoskeleton legs worn by the patient [see Figure 4.4.2.(2)]. The second version, currently being used experimentally, is hydraulically powered and was produced by Renault. This system is highly promising for training limbs; the extension towards autonomy on the basis of a kinematic computer model of walking is envisaged in the long term. The patient would use two walking sticks.

Source: Robot Technology – Vol 3a – Teleoperations and Robotics: Evolution and Development by  Jean Vertut and Philippe Coiffet, 1986.

Patent US3993056

Publication number    US3993056 A
Publication date    Nov 23, 1976
Filing date    Jan 21, 1976
Inventors    Pierre Rabischong, Jean Pierre Louis Bel
Original Assignee    Institut National De La Sante Et De La Recherche Medicale

An orthopaedic appliance which enables paralytics to stand erect has a fabric garment formed in separate pieces to be tightly wrapped around body parts located between joints the pieces having an inflatable support structures in the form of vertical tubes and devices connecting garment pieces located on opposite sides of a body joint in the form of a separate row of rigid parallel pins attached to the inflatable structure each garment piece and a pivot which can be hydraulically or otherwise driven, interconnecting the rows of pins. The inflatable tubes are located in elongate fabric sheaths and the pins are inserted in fabric sheaths defined between the tube sheaths so that when the tubes are inflated they clamp the pins between them.

See also later patent US4169467.

See other early Teleoperators, Exoskeletons and Industrial Robots here.

Tags: , , , , , , ,

2011 – “Ant-Roach” – Otherlab (American)

Here is the Otherlab’s 15 foot inflatable walking robot, the Ant-Roach.  We thought this conceptual elephant looked more like a cross between an anteater and a cockroach.  The goal of building the Ant-Roach was to demonstrate the carrying capacity and high strength-to-weight ratios possible with inflatable structures.

Comments November 21, 2011 by Travis Deyle of Hizook – see original article here.

"I'm really excited about inflatable robots… they have the potential to be low-cost, lightweight, extremely powerful, and yet "human safe" — ie. perfect for many robotics applications.  With that in mind, I would like to introduce you to two new (breakout) inflatable robots: a 15-foot-long walking robot (a Pneubot named Ant-Roach) and a complete, inflatable robot arm (plus hand).  Both of these robots were developed by Otherlab as part of their "pneubotics" project (in collaboration with Meka Robotics and Manu Prakash at Stanford University), with some funding from DARPA's Maximum Mobility and Manipulation (M3) program.    These robots use textile-based, inflatable actuators that contract upon inflation into specially-designed shapes to effect motion.   Since these robots are built out of lightweight fabric-and-air structural members and powered via pneumatics or hydraulics, they exhibit large strength-to-weight ratios.  For example, Ant-Roach is less than 70 lbs and can probably support up to 1000 lbs; the inflatable robot arm is less than 2 lbs and can lift a few hundred pounds at 50-60 psi.  Be sure to read on for details and lots of videos!"

Picture above shows Pete Lynn hefting the whole thing.

The muscles are textile-based actuators which contract upon inflation.  The picture above shows a stack of them during construction.

The muscles are driven from several central manifolds which dispense compressed air.

All pictures and captions sourced from Otherlabs webpage unless noted otherwise. See Otherlabs webpage and other videos here.

See other Pneumatic, Fluidic, and Inflatable robots here.

Tags: , , , , ,

2011 – Inflatable Robot Arm and Hand – Otherlab (American)

Otherlab's prototype articulated inflatable robot arm,  is apparently able to lift a person with 50-60 psi even though it weighs only 2 pounds.

All pictures and captions sourced from Otherlabs webpage unless noted otherwise. See Otherlabs webpage and other videos here.

See other Pneumatic, Fluidic, and Inflatable robots here.

Tags: , , , ,

2010 – Soft Arm – Siddharth Sanan (Otherlab)

Siddharth Sanand: is doing his PhD at the Robotics Institute at CMU. He is interested in making robots soft and safe to enable physical human robot interaction. On the other side, he has been sewing together various ideas on inflatable robots and actuators.  Recently interned at Otherlab.

All pictures and captions sourced from Otherlabs webpage unless noted otherwise. See Otherlabs webpage and other videos here.

See other Pneumatic, Fluidic, and Inflatable robots here.

Tags: , , , ,

2011 – Inflatable Walking Elephant – Otherlab (Saul Griffith)

Pneubot stands for "pneumatic robot", or a robot that is actuated by pneumatic technology. A pneumatic technology involves the use of compressed air to drive mechanical motion. The compressed air can be moved through soft, balloon-like tubes, which allows for both rigidity (when filled) and flexibility (when decompressed or empty). In this video, an elephant-shaped pneubot is used to demonstrate the level of motor control allowed using this technology.

MAKE #27
Pneubotics: Walking Bouncy Castles
By Saul Griffith

Sometimes I feel like a false nerd, or a geek with two important genes missing: I’m not particularly interested in space exploration, except as fiction, and I’ve never cared for robots. So I find it strange that I’m now working on a Defense Advanced Research Project Agency (DARPA) robotics program.

I think what I never liked about robots is that they’re complex machines that really don’t do much. They’re fragile and very expensive. I like simple, robust things; things that don’t cost more than they should.

What I’ve found myself working on (with Jack Bachrach, Geoffrey Irving, Pete Lynn, and the good guys from Meka Robotics) is completely soft, completely compliant, very lightweight, and very cheap. No joints. No servos. Just skins — inflated skins.

For a long while I’ve been fascinated by inflatable objects for their extreme strength-to-weight ratios (they can carry a lot of load for very little mass). I also love the challenge of designing something “human safe,” in the robotics lexicon. Biology doesn’t use metal, and it doesn’t use servos. Nature points to some very interesting alternatives.

To make it work, we had to invent a new kind of actuator. Think of it as a vascular system for robots. It’s fluidic — works equally well with air or water — and by pumping either of those around, you can change the dimensions of the skin and effect motion. Our first actuator was quite literally a bicycle inner tube in a sewn pair of membranes. It worked really well for a $5 prototype!

For the next trial, I asked my sister to return an inflatable 4-foot-high elephant I’d designed and given to my niece. When it arrived, Pete burned the midnight oil and sewed up some vascular “muscles,” and in a day or two we had four moving legs. It actually walked. About one mile every 24 hours, but hey — baby’s first steps! It moves like no machine you’ve ever seen; more like the way biology moves. A walking inflatable elephant might sound ridiculous, but it works, and the numbers on paper told us it should have incredible strength, good speed, extremely low weight, and cost very, very little to manufacture.

The next prototype was designed to walk with a human rider on it and to look less like an elephant. We built it in under a week for less than $1,000 in parts. A 15-foot-long, 5-foothigh robot with 28 muscle actuators (four in each of six legs, another four in the trunk). It worked too (after a few exploded actuators).

I like the idea of a robot you can sew together. I like that it has no heavy, sharp, or costly parts. Most of all, I like the intellectual challenges of it. There aren’t any CAD packages for designing highly elastic kinetic membrane structures. We had to write our own. There aren’t any analysis simulations. We had to write our own. There aren’t any walking bouncy castles out there. We built our own! We call our weird new style of robotics “pneubotics,” as in pneu for air (like pneumatic).

Who knows if the robotics community will like it or even care. Either way, that’s not why I built it. I built it because perhaps my niece will forgive me if she gets a walking elephant next Christmas that she can ride to school.

All pictures and captions sourced from Otherlabs webpage unless noted otherwise. See Otherlabs webpage and other videos here.

OtherLab is a collective of scientists and inventors involved in a number of projects, including proof-of-concept mechatronics that might be useful in building functionally adaptive and intelligent machines.

See other Pneumatic, Fluidic, and Inflatable robots here.

Tags: , , , , ,