Posts Tagged ‘Mecha’

1978 – ARMS 1 – Oceaneering (American)

ge-underwater-manipulator_0001 (2) - Copy-x640

1978 – ARMS 1 (Atmospheric Roving Manipulator System)

ge-underwater-manipulator_0010 - Copy-x640


As early as 1971, Dr. Norman H. Wood, program engineer for General Electric's Cybernetic Automation & Mechanization Systems Section, described a new underwater manipulator system devised for use on a multi-well submerged platform. GE's activities in manipulators date back to the company's nuclear power development and space projects. It was a development based on the G.E. Model M-2 Manipulator Arm.

GE-E-2-manipulator - Copy-x640

In 1974, Oceaneering International, Inc., of Houston started developing a 3,000 ft. two-man diving bell jointly developed by Perry Oceanographies, General Electric Company and Oceaneering themselves. Called the Atmospheric Roving Manipulator System (ARMS), which would use an advanced capability force-feedback manipulator featuring a seven function master arm inside a manned submersible and a slave working arm outside that provides “feel” to the operator, from the Re-entry & Environmental Systems Div., General Electric Co., Philadelphia. GE reports "With the G.E. underwater force-feedback manipulator, the operator no longer has to rely on the sometimes difficult decision making processes".

G.E. call their system the Diver Equivalent Manipulator System (DEMS), which can be operated from the inside or from the surface. The arm reaches over 5 ft and can handle 65 lb with only 5 lb of operator hand pressure. This manipulator system has six degrees of freedom plus a grip. If the slave holds a 65 pound weight the operator "feels" a smaller, 5 pound weight (DEMS has 13:1 force ratio). By responding to the force feedback, the operator allows the manipulator to comply to external forces.

The bell is a 72" sphere, designed to accommodate two people, with an emergency support capability of up to five days.

The GE arm system has a reach of 1.6 metres, 29.5 kg rated load and operates to a depth of 1829 m.

ge-underwater-manipulator - Copy-x640

Oceaneering International took delivery on the Perry-built, one-atmosphere vehicle ARMS in late 1976 and was first demonstrated in March 1977.

In 1978, ARMS-I, mainly employed for deepwater drill rig support, was in service on the Ben Ocean Lancer drillship in the Gulf of Mexico.
In the 1980's, Oceaneering renamed ARMS and was now called Ocean-Arms Bells.


Having completed final testing, General Electric's underwater force feedback manipulator is ready to be mated with a 3000-ft (914 m) one-atmosphere diving bell being developed by Oceaneering International, Inc. The diving bell, designated Atmospheric Roving Manipulator System (ARMS), will undergo wet tests in early 1977 in Houston.
The master-slave manipulator is sized to handle a 65 lb (29.5 kg) load at full rated speeds, with a stall capacity of 100 lb (45 kg). The 6df slave has 5.5 ft (1.7 m) full extension to the ends of the universal stub fingers. The hand grip provides the seventh motion. The stub fingers are designed for quick interchange with tooling.
As the operator in the bell moves the terminus of the master, the slave located outside the bell follows at a one-to-one ratio in speed and angular displacement. As a force or an object is encountered by the slave, a portion of the torque generated in a joint is fed back to the master to produce a proportional torque in the corresponding master joint.
The hydraulically powered rotary actuators are arranged at each joint to simulate the human arm, with two wrist motions and a forearm rotation mutually orthogonal, an elbow joint and two shoulder motions, elevation and azimuth. The electrically powered master is a small replica of the slave, with a hand grip at its terminus.
The key elements of this system, a product of GE's Re-entry & Environmental Systems Division, are spatial correspondence and force feedback. The accurate and responsive spatial correspondence of the slave motion, or position, to the master provides precise control.
"ARMS' manipulator can start a nut, stab guidewires, turn valve handles or feel a gap, even in poor visibility or current motion," states Norman H. Wood, GE's Underwater Manipulator Program Manager. "It can locate, grasp, and perform tasks with pins, cables or other hardware in zero visibility," he continued, "an almost impossible task for a rate manipulator because it doesn't have a sense of feel."
The underwater force feedback manipulator is based on years of experience gained from GE's MAN-MATES Industrial Manipulators currently in use in forging operations, foundries and manufacturing facilities.


The "Aluminaut" also employed G.E. force-feedback arms.

From: Phil Nuytten : Source: here.
To: personal_submersibles
Sent: Fri, Nov 18, 2011 4:46 pm
Subject: Re: [PSUBS-MAILIST] Anyone Know Tom Pado or Total Marine Technology?

All: Yup, I know Tom Pado – he used to work for us at Oceaneering International Inc. He and John Fike were the lead pilots on a series of 3,000 foot rated thruster/manipulator bells designed for offshore oil related work – the series was called 'Ocean Arms' and Perry built Arms 1 through 3, We built 'Arms 4' here in B.C. and it's still here – out in the boneyard. The thruster bells were really only a piloted delivery system for the G.E. force-feedback, spatially compliant manipulator arm. (O.I.I. owned all rights to the G.E. arm – the rights were purchased from General Electric – it was used in their 'Man-mate' program.) The G.E. arm was, in my opinion, the best manipulator arm ever made – right up to current time. Biggest problem was cost – about $250,000 per arm and controllers. I used this system many times and it was superb!

General Electric's Re-entry & Environmental Systems Division later became Western Space and Marine.

See other early Underwater Robots here.

See other G.E. CAMS here:

1956- GE Yes Man
1958-9- GE Handyman – Ralph Mosher
1969 – GE Walking Truck – Ralph Mosher
1965-71- GE Hardiman I
1969- GE Man-Mate Industrial manipulator

1973 – Under Sea Mobility – Ralph Mosher (American)

Underwater Army Bases and Depot (See Figure 51: Under Sea Mobility)
Recent marine biology and ocean engineering work have resulted in some startling underwater activity concepts and systems designs that promise to pave the way to a profitable exploitation of untapped water resources. It is not difficult to argue that before this decade has passed the Army, as well as the Navy, will be involved in exploiting and protecting our underwater territory.
Already, large oil companies are competing for underwater rights for oil well operations. The United States government is the guardian of this territory and has the specific operational guidelines. Petroleum industries are currently designing huge and complex underwater oil mining operations. The author predicts that some day in the near future they will operate their own underwater stations. There are obvious advantages to this foray into our underwater territory.
The petroleum industries have found that to operate these underwater complexes they need transportation and mobility. They have design vehicles that travel from the surface down to the site and are able to do work by means of underwater manipulators. It follows that a necessary and valuable tool for underwater work will be unusual vehicles that can provide the ability for man to work remotely as he would on earth directly. The illustration in Figure 51 of this unusual underwater vehicle is a concept that might not ever be realized. However, it is predicted that the elements of this concept, the legs, and the manipulator arms, and the man's ability to operate the vehicle from within, are concepts that will be used to provide the kind of functions illustrated.

From: Technical Report Number 11768, Applying Force Feedback Servomechanism Technology To Mobility Platforms, Ralph Mosher, 1973.

The earlier G.E. Pedipulator concept dates back to 1962-64.

Land-based concepts done 1962, test Pedipulator demonstrated in 1964. It was never completed as a proposal for a more useful quadruped was put forward and accepted (see here ).

See other early Underwater Robots here.

See other G.E. CAMS here:

1956- GE Yes Man
1958-9- GE Handyman – Ralph Mosher
1969 – GE Walking Truck – Ralph Mosher
1965-71- GE Hardiman I
1969- GE Man-Mate Industrial manipulator

1978-9 – Mobile Suit Gundam (Fiction) – Yoshiyuki Tomino (Japanese)

Although inspired by Robert Heinlein's "Starship Troopers" that had infantrymen wearing "power suits" that surround their bodies and amplify their movements, most of the Gundam mobile suits were of the "driveable robot" tradition, where operators sat in cockpits and manipulated levers and pedals.

The Gundam concept was developed in 1978, with the TV series first airing in 1979.

Mobile Suit Gundam statue erected in Japan.

A Mobile Suit Gundam poster

WHAT'S gundam by Martin Ouelette
From the magazine "MECHA PRESS"

To understand the story and "raison d'etre" behind gundam, one must go back nearly thirty years, to the early 1960's and the start of the Japanese "Giant Robots" animation show tradition, "TetsuYin28" being the first one. The base story being, 99.9% of the time, the struggle for power between good and evil in the style of bad guys attack Tokyo (seemingly the only city on Earth!), killing a scientist in the process. Following that, the son or nephew of the scientist in question climbs into the brand new giant robot (with a suitably noble name, of course!) the dearly departed had just completed (in time for the invasion, it goes without saying!). Then he quite simply saves the world from destruction, while reading the instruction book, nonetheless!
But Yoshiyuki Tomino, an experienced animation director, was convinced that Japanese animation had more to offer. According to Frederik L..Schodt in his introduction to "gundam MS I AWAKENING (the first of a three books series on gundam MS), Tomino was partly inspired by the 1959 novel by Robert Heinlein "Starship Troopers" when he created a brand new approach to the "robot shows" with "gundam Mobile Suit". The Mobile Suit consists of a giant piloted mechanical suit, or exoskeleton, sporting sophisticated armament. In Tomino's viewpoint, mechanical designers had to keep the limits of credibility and the laws of physics in mind while creating the designs. Named "mecha" or "Mobile Suit", these machines looked realistic and didn't have the "principal character" aura the robots before them had. Like the "mecha", the characters created for gundam were much more complex than the ones from the earlier animations. He innovated in introducing characters which couldn't simply be considered good or bad. An example of this being the relationship between Char Aznable and Amuro Rey.
The first "gundam MS" television series, in 1979, did not meet the rating expectations of Tomino at first, but ended up as "the" sensation of the early eighties in Japanese animation.

Tags: , , , , , , , ,

1930 – Giant Mechanical Worker – Franz Hübl (Czechoslovakia)

The devices perform alternating and quite different mechanical works which are controlled by a person. The object of the present construction is to amplify the force of a man and perform different kinds of mechanical works which otherwise have to be performed by hand. The principal kind of works to be performed are digging, pile-driving, dredging, loading of freight, road- and railway  construction, cutting of trees, clearance of land, clearance of land, sawing, carrying of goods, lifting, and in fact, any kind of heavy work.  A novel concept is that of a kneeling man to keep it simple for the human operator.

There's no known evidence of it actually being built.

The description sounds similar to that of the later GE Pedipulator.

See Hübl's patent information here.

Patent number: 1880138
Filing date: Mar 13, 1930
Issue date: Sep 27, 1932


The modern day equivalent is probably Robosaurus.

See patent information here.

Patent number: 5052680
Filing date: Feb 7, 1990
Issue date: Oct 1, 1991

See all the known Teleoperators, Exoskeletons, Man-Amplifiers and Industrial Robots here.


1962-64 – GE Pedipulator – Ralph Mosher (American)

Concepts done 1962, test Pedipulator demonstrated in 1964. It was never completed as a poposal for a more useful quadruped was put forward and accepted (see here ).

See Popular Mechanics Oct 1965 article here (pdf).

See video clip of Pedipulator here. The Gaumont video site is a pain to use. One must be registered (free). There is an English version. One registered (it can take a while to get confirmation email), log in, then enter "1966 22 31 NU" in the REFERENCE search field.

Update: one of my commenters reminds me that there is an easier to use film clip on British Pathe here.


see Mechanix Illustrated Sept 1964 article here (pdf).

The below images show a train of pedipulators connected together. This is probably the first as a concept for the "Iron Mule Train" based on biped walkers.

Russian concept circa 1974 for Pedipulator. Note the heavy use of 'mind control' i.e. bio-feedback.  I like the way it portrays the picking of delicate flowers, then stomps over the plants that had them.

See other GE CAMS here:

1956- GE Yes Man
1958-9- GE Handyman – Ralph Mosher
1969 – GE Walking Truck – Ralph Mosher
1965-71- GE Hardiman I
1969- GE Man-Mate Industrial manipulator