Posts Tagged ‘Meccano’

1984 – FETAL I Omnidirectional Robot – William H. T. La (Vietnamese/American)

Fetal-1-colour-x640

FETAL-InfoWorld-11Jun1984-x640

FETAL I had its major public appearance at the International Personal Robots Congress (IPRC) held in Albuquerque, New Mexico in 1984.

iprc3-ra-aug84 001-x640

Fetal I, constructed by Bill La, is a three-wheeled vehicle capable of moving in any direction, A later prototype, Fetal II [no picture available], was presented a Golden Droid award at the 1984 IPRC.

robot1_0030-x640

Albuquerque84-RM12William-H-T-La-david-buckley-x640

FETAL I at the IPRC 1984. Images by Richard Moyle via David Buckley's Historic Robots.

Albuquerque84-RM13-fetal-davidBuckley-x640

IPRC-Robotics Age Aug 1984.
Sunday was the day everyone had been waiting for, the awards brunch, Nelson Winkless, the official historian for IPRC, acted as master of ceremonies. After his opening remarks and thanks to the many behind-the-scenes personnel, Nels got down to the most important part of the program, the presentation of the Golden Droid awards.
The Golden Droid awards were presented in three categories: the most entertaining going to Bruce Taylor for his robot Henry; the most useful being presented to Reza Falamak and his EZ Mower Robot; and the open award going to Bill H. T. La for his Fetal II [Ed. not shown.]. After the picture-taking and congratulations were over, it was back to the exhibition hall for the final afternoon of the show, Although Sunday's attendance was somewhat less than the two previous days, the enthusiasm was still evident.

Albuquerque84-RM15-fetal-designers-x640

Dr. Bill La with his wife.


Venture – Volume 6, Part 2 – Page 88

William H. T. La, 33, was a Vietnamese exchange student and maker of toys when he invented the Alexis while playing with an erector set. He found that by placing castings on three wheels, the wheels could move in any direction.

omni-81-la-x640


Patent information:

omni-1 001-x640

omni-2 001-x640

Source: Robotics Age, Feb 1984.

Pat-La-US4237990-1-x640

Pat-La-US4237990-2-x640

Pat-La-US4237990-3-x640

Pat-La-US4237990-4-x640

Pat-La-US4237990-5-x640
Publication number    US4237990 A
Application number    US 06/000,570
Publication date    9 Dec 1980
Filing date    2 Jan 1979
Inventors    Hau T. La
Original Assignee    Hau T

Omnidirectional vehicle
US 4237990 A
Abstract
A wheeled vehicle provided with three individually driven wheels rotatable on horizontal axes. The wheels are disposed at the corners of a triangle. The periphery of each wheel is defined by a plurality of rollers rotatable on respective axes which are each at an angle to the axis of the respective wheel. The axes of three rollers, one for each wheel, when each such roller is in its lowermost position, form a triangle. Each roller axis may be at right angles or perpendicular to, or at 45 degrees to, or at some other acute angle to the respective wheel axis, and the triangle may be an equilateral triangle in a typical embodiment of the invention.
According to a preferred embodiment of the invention, no two of the wheel axes are aligned or parallel to each other. In a typical construction, the wheels are at the corners of an equilateral triangle and the wheel axes intersect at the center of this triangle. The vehicle may be driven over a surface, or it may be inverted and an object with a surface engaged on the wheel rollers may be moved with respect to the stationary "vehicle". Controls for motors driving the wheels of the vehicle are provided to produce rectilinear movement, rotational movement or curvilinear movement of the vehicle over the surface.


Alexis, the Omnidirectional Wheelchair.

omni-c2 001-x640

An earlier prototype of the omnidirectional wheelchair.

Source: Basic Robotic Concepts, John M. Holland, 1983
A version of this drive was developed by the Veterans Administration as a transport system for paraplegic persons (Fig. 3-28). This system powers only the axial motion of each wheel, allowing the smaller outer wheels to roll freely. The effect is that these rollers act as force translators. This effect can be seen for the case of forward drive shown in Fig. 3-29B. Notice that only the two rear wheels are powered for this maneuver and that their outward force vectors cancel. This scheme greatly reduces the complexity of the carriage, but some loss of traction will occur. The small diameter of the rollers will also cause difficulty on surfaces that are not perfectly smooth.
•    Efficiency: Good
•    Simplicity of Control: Excellent
•    Traction: Good to fair (for single-axis drive)
•    Maneuverability: Excellent
•    Navigation: Excellent to fair (for single-axis drive)
•    Stability: Fair to good depending on mounting
•    Adaptability: None
•    Destructiveness: Excellent
•    Climbing: Poor
•    Maintenance: Poor to good (for single-axis drive)
•    Cost: Moderate (in production) to good (for single-axis drive)

omni-c3 001-x640

alexis-x640

Dr. William H. T. La is the inventor of the Alexis, at the V.A. Institute in Palo Alto. The Alexis is a nonconventional "smart" wheelchair that uses a system known as "metamotion", employing three independently motor-driven nonparallel wheels linked by an on-board computer. This feature, patented by Dr. La in 1980, allows the Alexis to move directly to any point on the horizontal plane by the rider's manipulation of a joy stick that sends an electronic signal to the computer that controls the directions of the three wheels. The Alexis also has a control feature that enables a rider unable to manipulate the joy stick to operate the Alexis by head motion. As a result, any rider of the Alexis, regardless of disability level, could make it "turn on a dime" and maneuver it in cramped spaces.

The world's most futuristic wheelchair was designed and patented by Stanford University in 1982. It's omni-directional wheels made it truly revolutionary for its time. It was named in honor of Kim Alexis.

The Evening Independent – Sep 24. 1984  
'Alexis' the wheelchair called a significant step
As technology advances, entrepreneurs put it to use—quite often, to the advantage of victims of disease and infirmity, On this page, the focus is on a new computer assisted "sports car" wheelchair.
PAUL ENGSTROM
Knight-Ridder Newspapers
SAN JOSE, Calif, — Robert Smith slides into the $1,300 bucket seat of his sleek, computer-assisted wheelchair, fingers the control panel at his left hand and the joystick in his right, then zips off for a quick spin around a local shopping center,
At a top speed of 12 mph, the machine isn't exactly primed for the Daytona 500, But "Alexis," as Smith has dubbed this roadster-like tricycle for the disabled, which he helped design, enjoys advantages unknown to stock car racers.
At the shopping center, those advantages quickly proved themselves, Smith didn't swerve when shoppers stepped in his path because Alexis, unlike conventional wheelchairs, can move sideways as well as forward and backward.
The vehicle is part ballerina, too — it can pirouette within its own footprint, whereas ordinary wheelchairs have a turning radius of about one yard. This gives Alexis the kind of maneuverability that is critical in tight spaces, such as between racks of clothing in apparel stores or between a desk and wall at the office.
And belying the notion that wheelchairs will always be drab, pitiful contraptions, Alexis got some admiring glances as it sidestepped and twirled for the curious shoppers, A list of the world's 10 sexiest machines, Smith knows, wouldn't include present-day wheelchairs — an image he hopes Alexis will shatter so that, eventually, paraplegics and others can pride themselves on what may be their only means of powered transportation.
Indeed, Smith was thinking of Kim Alexis when he christened the wheelchair. She's the stunning blonde who last year modeled a red bathing suit in Sports Illustrated's swimsuit edition.
Smith, 24, who graduated from Stanford University in 1982 with a master's degree in mechanical engineering, and four others designed and built the futuristic wheelchair over a six-month period at the Veterans Administration Rehabilitation Research and Development Center in nearby Palo Alto, Tim Prentice, a high school student at the time, provided rough sketches of what was to become Alexis.
Smith's goal was to innovate, to build a machine that would include a Zilog Z-80A microcomputer to adjust the speed of the three independently powered wheels so the vehicle would move in precise directions at precise speeds. The microcomputer performs this command-and-control loop 20 times a second.
"It's almost as if you were going to build a sports car," Smith said of his design approach. "You can either soup up a Chevy Nova or start with a clean sheet of paper and design a Corvette."
Each wheel consists of eight natural-rubber rollers instead of treads, allowing the wheelchair to travel in all directions without any drag. The Boeing Co, owns the patent on this design for its shop carts.
The wheels — two in front and one in back —and motors are concealed by rounded fiberglass covers adorned with a red racing stripe. Adding to this airstreamed, classy look is the removable bucket seat manufactured by Recaro, the type commonly found in sports and racing cars.
"Actually, I'm kind of tired of that designs" Smith confided, "It looks like a vacuum cleaner,"
Perhaps, but Alexis doesn't sound like one. Its advanced electronics create very little noise. Moreover, the microcomputer won't let Alexis travel so fast that it tips over, and because all three motors are identical, unlike conventional models with left and right motors, parts are interchangeable.
That's important because wheelchair manufacturers don't stock many spare parts.
International Texas Industries of San Antonio has purchased the patent on Alexis and will manufacture it in Wichita, Kan. The first delivery is due Dec, 31. Initially, 500 of the wheelchairs will be test marketed only in the San Francisco area, so engineers here will be able to easily spot and correct any glitches.
The standard model will sell for $4,000 to $5,000, Smith estimates. Wheelchairs currently on the market, which is dominated by a company called Everest & Jennings, vary from $4,000 to $15,000, depending on the number and type of accessories the buyer needs.
Experts in and out of the VA agree that Alexis marks a significant step in wheelchair technology.
"This is the single most important contribution to mobility of the disabled since electric-powered wheelchairs were introduced," said Larry Leifer, an associate professor of mechanical engineering at Stanford University and director of the VA's research and development center.
"Most offices are inaccessible to wheelchairs. We expect Alexis to give (disabled) people a wider choice of places to live — without modifying that house, which is very expensive — and we expect it to give them broader employment opportunities."
David McGowan, executive director of the Adult Independence Development Center in Santo Clara, agreed.
"I'd say it's a rapid evolution," McGowan said. "It would be a significant change.
"Although federal law mandates that new projects be accessible to the disabled, we live in a reality where most buildings are not accessible. Doorways and hallways are not wide enough, for example. That would make (wheelchair) maneuverability critical."
The VA, according to McGowan, is at the forefront of such innovations because of the financial resources available to it.
As with any new mechanism, development of the Alexis prototype has fostered its share of headaches. Today, the wheelchair — itself disabled — sits in Smith's cramped laboratory near the VA Medical Center waiting for a new joystick. The original throttle was much too stiff for the kind of fingertip control for which Smith is striving.
In addition, the two fiberglass and nylon chassis plates began showing immediate signs of wear, forcing a switch to pure fiberglass to ensure durability while still offering a smooth ride. Another problem was getting parts: Smith often found that, because of the hospital environment, drugs and toilet paper seemed higher on the VA's list of items to be ordered.
The test pilot who puts Alexis through its' paces is Peter Axelson, 27, another mechanical engineer at the research and development center. Axelson lost the use of his legs eight years ago when he fell 180 feet while learning to rock climb as an Air Force cadet.
In subsequent years, he founded Beneficial Designs of Santa Cruz where he designed the sit ski, similar to sled.
"The initial sense of being able to move in any direction in Alexis is incredible," he said. "That's the most profound feeling, I believe that most people would get into Alexis and not try to move in any direction but backward and forward because moving sideways is so unusual."
The wheelchair negotiates tight indoor spaces better than it does curbs, hills and other outdoor obstacles. Yet, all devices have their limits, and Alexis is no exception, Axelson said.
"It's like the difference between a long distance runner and a dancer, Alexis is agile."

Patent information:

Pat-US4715460-1-x640

Pat-US4715460-2-x640

Pat-US4715460-3-x640

Publication number    US4715460 A
Publication type    Grant
Application number    US 06/673,965
Publication date    29 Dec 1987
Filing date    20 Nov 1984
Also published as    EP0201592A1, WO1986003132A1
Inventors    Robert E. Smith
Original Assignee    International Texas Industries, Inc.
Omnidirectional vehicle base
US 4715460 A
Abstract
An omnidirectional wheelchair base 7 includes upper 10 and lower 20 flexible base plates held in spaced-apart alignment by a pair of front supports 14 and 16 and a rear support 18. A pair of front wheels 22 and 26 are provided, each mounted on the front supports 14 and 16, respectively, and each having an axis of rotation wherein the angle between the axes of rotations of each of the front wheels is less than 180°. A rear wheel is mounted on the rear support and has an axis of rotation less than 180° from each of the front wheels.

Publication number    WO1986003132 A1
Publication type    Application
Application number    PCT/US1985/002281
Publication date    5 Jun 1986
Filing date    19 Nov 1985
Also published as    EP0201592A1, US4715460
Inventors    Robert E Smith
Applicant    Int Texas Ind Inc


Alexis Wheelchair – Last word:
Alexis is an innovative electric wheelchair using a "wheels within wheels" design. It is unique in that it can turn in its own footprint and move sideways. The Rehab R&D Center licensed Intex Industries to make Alexis commercially available in 1987, and Intex made 40 pre-production units for field trials in the San Antonio area. During subsequent redesign efforts, the company filed for bankruptcy, preventing further commercialization at the time.

From the video blurb: Unfortunately, Alexis never made it to market because Jon King, Intex CEO, embezzled millions of investment capital. He was later convicted and spent 10 years in federal prison for his crime.


Mobile Vocational Assistant Robot (MoVAR): 1983-1988.
Overview of project

The MoVAR project used a unique, patented, 3-wheeled omni-directional base with a PUMA-250 arm mounted on it. It was desk-high and designed to go through interior doorways (see Figure 2). All electronics and power components for the motors and sensors were mounted in the mobile base. A telemetry link to a console received commands and sent position and status information. The mobile base had a bumper-mounted touch sensor system to provide autonomy in the face of obstructions, a wrist-mounted force sensor and gripper-mounted proximity sensors to assist in manipulation, and a camera system to display the robot's activities and surroundings to the user at the console. The robot console had three monitors: graphic robot motion planning, robot status, and camera view. It had keyboard, voice, and head-motion inputs for command and cursor control, and voice output.

MoVAR-colour
Omni-directional mobile robot called MoVAR.

Figure 2: MoVAR robot base with instrumented bumpers and joystick; the PUMA-250 carries a camera for remote viewing, a six-axis force sensor and gripper with finger pad-mounted proximity sensors. A wireless digital link allows the mobile base computer to communicate with the user console. A later phase of this project added instructable natural language input capability, coupled to an internal world model, so that typed-in commands such as, "move to a position in front of the desk, and move west when the bumpers are hit" could be executed. Path planning was not a targeted research area for this project due to the many other research groups active in this domain.

This project was stopped in 1988 when VA funding was terminated. The hardware and software were subsequently transferred to the Intelligent Mechanisms Group at the NASA Ames Research Center (Mountain View, CA) for use in the development of real-time controllers and stereo-based user interfaces for semi-autonomous planetary rovers.


See other early Humanoid Robots here.
See other early Mobile Robots here.

2011 – “Mystic Mec” Meccano Automaton – Chris Shute (British)

Above Photo by Chris Shute

A Meccano machine to read your palm. Built in 5 months from mostly modern Meccano parts and 13 salvaged motors. All 24 electrical switches and the 32 – step Sequencer are made from Meccano. Mystic Mec will choose an almost 'random' letter to hint at your future. Working eyelids, index fingers among other things….
The video doesn't tell you the final secret of how Mystic Mec managed to 'predict' the initials of many of my Meccano friends who had their palms read at our exhibitions. You saw that the letter drum will adavance automaticaly to stop the left arm at a new letter. The selected stopping point can be seen through a small shrouded window at the left of the drum. Now the crafty bit: the drum can also be advanced by a second motor (black, bottom left at 4.15). This extra motor is part of the Meccano Infra-red control set. The remote handset will just about operate through thin trouser pockets!

Mystic Mec
Let Mystic Mec read your palm! Using her special powers, Mec will choose a letter for you. Perhaps your name, your home, a friend or a glimpse of the future. Who knows?
Mystic Mec is (almost) entirely made from Meccano parts, except for her luscious lips and curly hair. All the electrical parts are built from Meccano, including nineteen limit switches for the various motors.
Most of the motors have been salvaged from old video and cassette recorders. Each has a single belt reduction before minimal gearing or a screwed-rod ram, e.g. the fingers, head-tilt and eyelid mechanisms. Mystic Mec's head is mounted on a built-up roller bearing. Motors for her eyelids and head-tilt are fitted below the neck, working through linkages which pass through the slotted holes of the Circular Plates. A switch on the eyelids will automatically cut power to the eyes' light bulbs when closed.
Under the table, a 32 step sequencer selects each motion in turn. As each limb completes it movement, a limit switch diverts the power back towards the Sequencer, to advance it and begin the next operation. Mec's mouth is connected in parallel with the Sequencer motor. This allows her to 'chatter' between each limb movement, and so avoids any 'dead' time between operations.
The Sequencer is a stand-alone unit, which can be reprogrammed simply by re-arranging the colour-coded leads, which connect to the various motor wires via paperclips on isolated curved Meccano strips. Beneath the curved strips is a device to reverse the polarity of the supply to the motors, when required, to change the direction of travel.
Chris Shute
Wem, Shropshire

Mystec Mec, by the way, is female, inspired by the former UK lottery-predicting lady, Mystic Meg. The model has a modest, breathing bosom, a sort of homage to the 18th Century Automata.
 
Unfortunately, she was dismantled in 2012 to make way for other projects.

Chris Shute with "Mystic Mec"

Photos by Rob Thompson.

Images and captions from www.nzmeccano.com .

A 32 step sequencer selects each motion in turn. As each limb completes it movement, a limit switch diverts the power back towards the Sequencer, to advance it and complete the next operation. Mec's mouth is connected in parallel with the Sequencer motor. This allows her to 'chatter' between each limb movement, and so avoids any 'dead' time between operations. 

The sequencer is a stand-alone unit, which can be re-programmed simply by re-arranging the colour-coded leads, which connect to the various motor wires via paperclips on isolated curved Meccano strips. Beneath the curved strips is a device to reverse the polarity of the supply to the motors, when required, to change the direction of travel.

Detail of Head by Chris Shute. Nice earings!


Tags: , , , , , ,

1937 – The Robot Gargantua – “Bill” Griffith P. Taylor – (Australian/Canadian)

The Robot Garguantua.

gar·gan·tu·a -n.
A person of great size or stature and of voracious physical or intellectual appetites. [After the giant hero of Gargantua and Pantagruel by François Rabelais.]


Like most, including myself, the true significance is lost in the title ("An Automatic Block-Setting Crane") and opening description of the original article published globally in Meccano Magazine, March 1938.


The original re-discovered documents now published in full book form.


In February 2013,  Chris Shute contacted me about "Meccano Robot Gargantua".
Although I was aware of it, but must admit to: 1. trying to keep away from industrial robots, 2. mistaking the robot taking it for an elaborate 'crane' when I first saw it, 3. didn't study it well enough to realise it was programmable, 4. assumed someone else more recently attributed to word 'Robot' to it, and lastly, 5. I didn't take note of its early publication date. I'd like to think my research is normally very good, but incorrect pre-conceptions let me down.. Anyway, I've now been corrected and amazed after reading Chris' story of The Robot Gargantua re-produced below.

"In March 1938, the Meccano Magazine published a brief article describing an automatic crane of stunning complexity. Have a look at Meccano Magazine, March 1938 p172, viewable via:  http://www.nzmeccano.com/MMviewer.php . A single motor drove all the motions of this monster machine, capable of building complex structures from wooden blocks automatically. From the original photograph, it was difficult to tell if Gargantua was even made from Meccano, or whether it could really do all that was claimed. Nobody had ever built anything so ambitious in Meccano.
A full description and more detailed photographs lay hidden for nearly half a century until the Liverpool Meccano factory was demolished. Constructor Quarterly magazine published them in a book with notes by John Woollatt and the late Bert Love and Alan Partridge. The creator of Gargantua was a 21-year-old student, Griffith ‘Bill’ Taylor, the son of Scott’s Antarctic geologist. Bill died in 1996, having spent most of his life as a professor of civil engineering in Sydney, Australia. I built the ‘Robot’ programmer in June 1997 and met Bill’s widow and son. They encouraged me to build the whole crane, which I did during the following 12 months, about 400 hours work. Here's a picture of my reconstruction. The main features are:
 • A single motor drives all motions.
 • The grab can also rotate – power comes through the suspension cords.
 • Mechanical limiters protect against over-driving.
 • Control levers are situated at the base of the tower, not on the jib.
 • No electronics are used apart from five solenoids.
 • Sequences up to 3 hours long may be controlled by punched paper tape.
 • Contains over 4000 washers, 300 collars, 200 gears and 100 pulleys.
 • Non-Meccano parts: 4 bricks, 2 rollers, paper, wood, Ford Sierra fan motor.

This is the only known complete reconstruction of Gargantua. I believe it was probably the world’s first truly programmable place-and-put robot. I feel it deserves a place in the history of robotics."

Chris continues in a second email.

"I believe Bill Taylor submitted his article to Meccano Magazine late in 1937, after completing the machine. Roman numerals on his typed manuscript read "MCMXXXVII". His notes say the machine was "the result of 3 years "effort". The lead-in time for publication, and the surface mail time from Toronto to Liverpool would be considerable. Many mechanisms used in Gargantua are unique, and would have made good magazine features individually, at the time. It's puzzling why neither the magazine nor Meccano did not exploit Gargantua more. A Pathe Newsreel in July 1937 featured a Meccano loom, for example. Bill Taylor was born in August 1916, making him only 21 years old at the time of completing Gargantua, while still studying for his engineering degree. A remarkable acheivement. I've attached a picture of my reconstruction of the 'Robot' (as it was called) i.e. the device that pulls and pushes the pre-existing 5 control levers for the crane. Mine is the same size as the original. Each lever, top left, has a central neutral position and can move linkages to large dog-clutches in transfer gearboxes dedicated to each motion. The crane can be driven manually if the "Robot" linkages are disconnected. Then the lever ends must be squeezed to release any lever from its locked position, like an old semaphore railway signal lever. The 'Robot' is driven by the same single motor as the crane, via a driveshaft seen just right of the control levers. A Meccano Dog Clutch can disconnect this drive. A 5-digit counter, like an old electricity consumer meter, top right, is used to count the revolutions of the motor. My paper tape transport is slightly modified, using a capstan and rubber pinch roller, as in a reel-to-reel tape recorder, for constant paper speed, and therefore constant sized holes cut in the paper. When drive to the take-up paper drum is engaged, a light brake is applied to the feed drum, to keep the paper taut, and simultaneously, 5 wipers press down on the paper. When a hole arrives, a circuit is made to one of 5 solenoid coils. In the original device, these were home made (mine are 1960s standard Meccano parts). Power for the coils would originally have come from 4 large 1.5 volt dry cells (seen in the original magazine picture, about the size of a beer can). Mine use 12 volts from the motor supply. Lower right, I've added a cable to 5 pushbuttons for manually firing the coils during demonstrations. The (weak) solenoids do not actually engage any gears. Instead, they cause some of the main motor's power to act upon the control levers. Five differentials are driven from the motor through their RH half-shafts. A light brake on the LH half-shaft causes the diff cage to spin fast but with less torque, reduced still further by 1:5 gearing to a shaft above carrying a 2" rod in a Handrail Coupling. When the solenoid is energised, its core moves a rod left to jam this spinning rod, whereupon the LH half shaft will turn, overcoming its light brake. A 7:1 reduction to a shaft above moves a long linkage to the relevant control lever. After a quarter-turn of this shaft, a roller and sprung linkage will flick the solenoid rod right, thus releasing the differential cage, and movement of the control linkage stops. The quarter turns permit a sequence of Forward-Neutral-Backward-Neutral to be engaged for each drive. This seems an elaborate device to engage/disengage gears, but it does the job well, using only a single coil for each motion, requiring only 5 possible holes in the paper roll (3 1/2" wide, used for adding machines in the 1930s). Since the same motor drives both the paper and the crane, synchronisation is reliable. the distance between holes equates to the number of motor revolutions allocated for each operation. In practice, when any motion is required to arrive at an end-stop position, a few extra revolutions are given, to overcomes light discrepancies caused by slippage, for example of the string/pulley drives in the grab. All motions have mechanical limiters at their end-stops, so this is not a problem. The tower-buiding was planned on graph paper and a table of the required motor revolutions for each motion is calculated. (e.g.opening the grab requires 150 revs). From this, it is possible to write a 'program' of events (= paper holes) defined by motor revolutions starting at 00000. The program is transfered to the paper roll by disengaging the drive to the 'Robot' and cutting a hole over a wooden backing strip. For stacking 24 blocks, over 500 holes must be cut. An error of 1mm on the paper roll could translate into about 1"for a block's position. Editing/correcting of the program is done with sticky tape. But the system works. Errors are generally down to the 'software', not hardware."

Chris has an expanded version of his story published in 2007. see pdf here.


Historical Significance

I've largely left Industrial Robots out of my website, but I feel that The Robot Gargantua deserves to be recognised as the first currently known Pick-and-Place Robot built, so I'll add a page on the short history of Industrial Robots.

The First Industrial Robots:

The Babbitt invention of 1892, mentioned in many Industrial Robot timelines, is not a robot at all under any definition. The Babbitt Crane patent has no mention of anything automatic, is not programmable and is under manual control using hydraulics.  Also no evidence of it being built, none that I've found, anyway. It appears to be an arm to grasp and remove hot ingots from a furnace. It may look robotic in today's terms, but that's as far as it goes.

  • 1935-7 – The design, construction, and submitted manuscript of The Robot Gargantuan.
  • 1938, March – The publication of The Robot Gargantua in Meccano Magazine.
  • 1938, April – Pollard's Positional spray painting robot patent was filed in April 1938. This I would call a robot by current definition.
  • 1939, August – Roselund filed his spray-paint robot patent – less of a robot than Pollard's due to the cam-drive nature, which , although good for repeatability, not good in re-programmability which defines an Industrial Robot.
  • 1954, March – The Brit Cyril Kenward filed his patent , beating the Devol patent by a few months .
  • 1954, December – Devol's patent filed and granted in 1961. 

[Update 2 Mar 2012 – Pollard's son, Pollard Jr., produced an earlier patent for an automatic spray-painting machine. Filed on 29 Oct  1934, granted on 27 Aug 1940. From an article on parallel robotics by Ilian Bobey in 2003, the patent consists of two parts: (1) an electrical control system and (2) a mechanical manipulator. The control system consists basically of perforated films, the hole density of which is directly proportional to the speed of each motor. The mechanical manipulator, on the other hand, is a parallel robot based on a pantograph actuated by two rotary motors at the base. Pollard Jr.'s patent was eventually issued on June 16, 1942, but, in the meantime, a license was granted to the DeVilbiss company in 1937. In 1941, DeVilbiss, later to become the first industrial robot supplier, completed the first prototype under the direction of Harold Roselund. Roselund's spray painting robot, later patented in 1944, was not a parallel robot and used only the control system proposed by Pollard Jr. ]


Control Unit – photo by Chris Shute.

Above: Detail of Control Unit

.

The gripper.

All photographs by Peter Haigh – see supersize originals here.


More Meccano Walking Machines & Robots

Meccano model of GE's Walking Truck designed by Hugh Henry.

All legs are completely rotatable in the same direction.

For a complete set of images see the NZ Meccano web site here.  Thanks Antonio Gual for encouraging  Tony Brown (the author of the Modelplan) who found some pictures of Hugh Henry's original.

(Has anyone built this model? I wouldn't mind getting some more pics and possible Youtube clip of this.)


Walking Steam Boat

Above model by Anthony Burkitt.

The Meccano Steam Boat Construction Set is part of popular the Crazy Inventors series of 5 multi model motorised sets.

You can build 3 different unique models with the 363 wood, metal and plastic parts in the Steam Boat Crazy Inventors Erector Set. Included in the set are a legs with suspensions, an anchor with chain, gears, tools and a character. A 6V motor (requires 4 AA batteries -included) allows the vehicle to really walk.


Other Meccano models:

Konkoly Walking Camel by Gary Higgins

See a selection of Konkoly walking models here. Thanks Antonio Gual for the link.


Mechanical Elephant model 1954.


Mechanical Kangaroo – Gravity walker. 1969.


Man learning to walk on a treadmill.


Tags: , , , , ,

1965 – Meccano Walking Horse and Chariot – Andreas Konkoly (Hungarian)

Source: Meccano Magazine, March 1965

…Since then, we have featured examples of his skill at fairly regular intervals in the M.M., one model which I personally remember very well being a Walking Horse and Chariot which was described in a 1965 issue. In fact, Mr. Konkoly himself said of this model recently, "Although I later built bigger, or more attractive, or perhaps better models, I nevertheless consider this model the chief work of my Meccano activities". It took him two years to perfect, but I [Ed] remember that the result was well worth the effort.

Source: Mecanno Magazine, June 1972


Image by Charlie Pack.

Model by S. Tokarski.

Model by Chris Shute.

Models by John Hanson, includes the walking Nurse with Pram on the left..


The Horse with mounted Spanish Night.


Tags: , , , , , , ,