Posts Tagged ‘General Electric’

1978 – ARMS 1 – Oceaneering (American)

ge-underwater-manipulator_0001 (2) - Copy-x640

1978 – ARMS 1 (Atmospheric Roving Manipulator System)

ge-underwater-manipulator_0010 - Copy-x640

ocean-arms-x640

As early as 1971, Dr. Norman H. Wood, program engineer for General Electric's Cybernetic Automation & Mechanization Systems Section, described a new underwater manipulator system devised for use on a multi-well submerged platform. GE's activities in manipulators date back to the company's nuclear power development and space projects. It was a development based on the G.E. Model M-2 Manipulator Arm.

GE-E-2-manipulator - Copy-x640

In 1974, Oceaneering International, Inc., of Houston started developing a 3,000 ft. two-man diving bell jointly developed by Perry Oceanographies, General Electric Company and Oceaneering themselves. Called the Atmospheric Roving Manipulator System (ARMS), which would use an advanced capability force-feedback manipulator featuring a seven function master arm inside a manned submersible and a slave working arm outside that provides “feel” to the operator, from the Re-entry & Environmental Systems Div., General Electric Co., Philadelphia. GE reports "With the G.E. underwater force-feedback manipulator, the operator no longer has to rely on the sometimes difficult decision making processes".

G.E. call their system the Diver Equivalent Manipulator System (DEMS), which can be operated from the inside or from the surface. The arm reaches over 5 ft and can handle 65 lb with only 5 lb of operator hand pressure. This manipulator system has six degrees of freedom plus a grip. If the slave holds a 65 pound weight the operator "feels" a smaller, 5 pound weight (DEMS has 13:1 force ratio). By responding to the force feedback, the operator allows the manipulator to comply to external forces.

The bell is a 72" sphere, designed to accommodate two people, with an emergency support capability of up to five days.

The GE arm system has a reach of 1.6 metres, 29.5 kg rated load and operates to a depth of 1829 m.

ge-underwater-manipulator - Copy-x640

Oceaneering International took delivery on the Perry-built, one-atmosphere vehicle ARMS in late 1976 and was first demonstrated in March 1977.

In 1978, ARMS-I, mainly employed for deepwater drill rig support, was in service on the Ben Ocean Lancer drillship in the Gulf of Mexico.
In the 1980's, Oceaneering renamed ARMS and was now called Ocean-Arms Bells.

ocean-arm-bell-1-x640

GE'S UNDERWATER MANIPULATOR SHIPPED TO OCEANEERING
Having completed final testing, General Electric's underwater force feedback manipulator is ready to be mated with a 3000-ft (914 m) one-atmosphere diving bell being developed by Oceaneering International, Inc. The diving bell, designated Atmospheric Roving Manipulator System (ARMS), will undergo wet tests in early 1977 in Houston.
The master-slave manipulator is sized to handle a 65 lb (29.5 kg) load at full rated speeds, with a stall capacity of 100 lb (45 kg). The 6df slave has 5.5 ft (1.7 m) full extension to the ends of the universal stub fingers. The hand grip provides the seventh motion. The stub fingers are designed for quick interchange with tooling.
As the operator in the bell moves the terminus of the master, the slave located outside the bell follows at a one-to-one ratio in speed and angular displacement. As a force or an object is encountered by the slave, a portion of the torque generated in a joint is fed back to the master to produce a proportional torque in the corresponding master joint.
The hydraulically powered rotary actuators are arranged at each joint to simulate the human arm, with two wrist motions and a forearm rotation mutually orthogonal, an elbow joint and two shoulder motions, elevation and azimuth. The electrically powered master is a small replica of the slave, with a hand grip at its terminus.
The key elements of this system, a product of GE's Re-entry & Environmental Systems Division, are spatial correspondence and force feedback. The accurate and responsive spatial correspondence of the slave motion, or position, to the master provides precise control.
"ARMS' manipulator can start a nut, stab guidewires, turn valve handles or feel a gap, even in poor visibility or current motion," states Norman H. Wood, GE's Underwater Manipulator Program Manager. "It can locate, grasp, and perform tasks with pins, cables or other hardware in zero visibility," he continued, "an almost impossible task for a rate manipulator because it doesn't have a sense of feel."
The underwater force feedback manipulator is based on years of experience gained from GE's MAN-MATES Industrial Manipulators currently in use in forging operations, foundries and manufacturing facilities.

arms-bell-omb-5-x640


The "Aluminaut" also employed G.E. force-feedback arms.


From: Phil Nuytten : Source: here.
To: personal_submersibles
Sent: Fri, Nov 18, 2011 4:46 pm
Subject: Re: [PSUBS-MAILIST] Anyone Know Tom Pado or Total Marine Technology?

All: Yup, I know Tom Pado – he used to work for us at Oceaneering International Inc. He and John Fike were the lead pilots on a series of 3,000 foot rated thruster/manipulator bells designed for offshore oil related work – the series was called 'Ocean Arms' and Perry built Arms 1 through 3, We built 'Arms 4' here in B.C. and it's still here – out in the boneyard. The thruster bells were really only a piloted delivery system for the G.E. force-feedback, spatially compliant manipulator arm. (O.I.I. owned all rights to the G.E. arm – the rights were purchased from General Electric – it was used in their 'Man-mate' program.) The G.E. arm was, in my opinion, the best manipulator arm ever made – right up to current time. Biggest problem was cost – about $250,000 per arm and controllers. I used this system many times and it was superb!
Phil


General Electric's Re-entry & Environmental Systems Division later became Western Space and Marine.


See other early Underwater Robots here.

See other G.E. CAMS here:

1956- GE Yes Man
1958-9- GE Handyman – Ralph Mosher
1969 – GE Walking Truck – Ralph Mosher
1965-71- GE Hardiman I
1969- GE Man-Mate Industrial manipulator

1973 – Under Sea Mobility – Ralph Mosher (American)

Underwater Army Bases and Depot (See Figure 51: Under Sea Mobility)
Recent marine biology and ocean engineering work have resulted in some startling underwater activity concepts and systems designs that promise to pave the way to a profitable exploitation of untapped water resources. It is not difficult to argue that before this decade has passed the Army, as well as the Navy, will be involved in exploiting and protecting our underwater territory.
Already, large oil companies are competing for underwater rights for oil well operations. The United States government is the guardian of this territory and has the specific operational guidelines. Petroleum industries are currently designing huge and complex underwater oil mining operations. The author predicts that some day in the near future they will operate their own underwater stations. There are obvious advantages to this foray into our underwater territory.
The petroleum industries have found that to operate these underwater complexes they need transportation and mobility. They have design vehicles that travel from the surface down to the site and are able to do work by means of underwater manipulators. It follows that a necessary and valuable tool for underwater work will be unusual vehicles that can provide the ability for man to work remotely as he would on earth directly. The illustration in Figure 51 of this unusual underwater vehicle is a concept that might not ever be realized. However, it is predicted that the elements of this concept, the legs, and the manipulator arms, and the man's ability to operate the vehicle from within, are concepts that will be used to provide the kind of functions illustrated.

From: Technical Report Number 11768, Applying Force Feedback Servomechanism Technology To Mobility Platforms, Ralph Mosher, 1973.


The earlier G.E. Pedipulator concept dates back to 1962-64.

Land-based concepts done 1962, test Pedipulator demonstrated in 1964. It was never completed as a proposal for a more useful quadruped was put forward and accepted (see here ).


See other early Underwater Robots here.

See other G.E. CAMS here:

1956- GE Yes Man
1958-9- GE Handyman – Ralph Mosher
1969 – GE Walking Truck – Ralph Mosher
1965-71- GE Hardiman I
1969- GE Man-Mate Industrial manipulator

1964 – Aluminaut Submersible – Reynolds Submarine Corp. (American)

1964 – Aluminaut Submersible.

aluminaut-bushby-arm-x640

Image source: Manned Submersibles, Frank Bushby, 1976.

The Aluminaut is equipped with external dual manipulators which were designed jointly by Reynolds and the General Electric Company, Schenectady, New York and built by General Electric. Each manipulator handles up to 200 pounds at its full nine foot extension, and both are jointly operated by a single hydraulic power package. This equipment is built from hollow sections of aluminum, and weighs only 150 pounds in air. It is driven by a one horsepower induction motor connected directly to a constant volume pump which produces 3,000 psi working pressure. Four-way solenoid control valves are used with rotary piston type actuators. The power package holds about 11 gallons of hydraulic oil. Since the hydraulic unit is pressure compensated, the oil must resist the cumulative effect of the working pressure plus the ambient pressure.

aluminaut-descending-x640

Aluminaut's manipulators represented the most advanced technological achievement of the late sixties. Each arm has six degrees of freedom. Working together they provide a high degree of versatility. When not in use, the manipulators retract and fold back under the bow. (Bushby)

aluminaut-front-1-x640

aluminaut-land-x640

aluminaut-manip-pmjan70-x640

aluminaut-prey-1-x640

aluminaut-6-man-bushby-x640

The working position of the operators and the arms.

aluminaut-bushby-1-x640

aluminaut-texaco-1970-ad-x640

The GE CAM technology was further deployed in these manipulator arms developed for the research submarine, Aluminaut.

See GE CAMS technology described here.


See other early Underwater Robots here.


1958-62 – “Beetle” Mobile Manipulator – G.E. Corp. (American)

beetle-ps-8-x640

1958-62 – "Beetle" Mobile Manipulator.


Background Information:

remote-manipulator-pm-sep56-x640

Popular Mechanic's (Sep 1956) drawing made by Frank Tinsley from designs by Lee A. Ohlinger of Northrop Aviation, Inc. of a robot mechanic for the proposed atomic-powered airplane, a star-crossed project that stumbled through 10 years and $500,000 without ever getting off the ground.

remote-manip-us3043488-pat-x640

General Mills was one company that patented a 'Vehicle-Mounted Manipulator' in 1958 as its proposal for atomic-powered aircraft maintenance, amongst other purposes.

Publication number US3043448 A
Publication date Jul 10, 1962
Filing date Sep 19, 1958
Inventors Melton Donald F
Original Assignee Gen Mills Inc


Beetle-announce-x640

Source: Missiles and Rockets, Volume 9, 1961

Robots-EIJul61_model-x640

Beetle-model-x640

In 1961, GE's Beetle was under construction. The above few pictures show the model that was built beforehand.


beetle-ps-4-x640

World's Biggest Robot By Martin Mann
Fix an atomic rocket engine? Clean up spills of radioactivity? Rescue H-bomb victims? That's what the Beetle is for
 
THAT monster glaring at you from the left is the biggest robot ever made. It weighs 170,000 pounds in its double-thick rubber treads. It can punch its claw hand through a concrete wall or gently stretch stainless-steel arms to pluck an egg off the top of a house. 
There's a man inside. Safe within the lead-and-steel cab, he can work where no unarmored man could live -in the deadly radiation that atomic energy the most fearsome as well as the most promising invention of the century.    
He could roll right up to the atomic engine of a space rocket and delicately maneuvering those 16-foot arms, make adjustments. Or he could replace a broken part in the atomic boiler of a power plant. Or haul the fatally hot debris of a nuclear accident away to the burying ground. If H-bombs struck he could dash into the destruction zone to rescue injured people and scrape away the worst of the fallout dust. 
That's what this bizarre machine, named the Beetle, can do. When PS Chief Photographer Bill Morris and I first saw the Beetle, it wasn't doing anything but sitting on a hangar floor. They couldn't start the engine.

Beetle is first of a family of robots that will handle the hot jobs of the atomic age

beetle-ps-7-x640

Robot with a bellyache. In four days it operated seldom, and then it limped more than ran. There was difficulty with the degassing circuit. A plug popped and hydraulic fluid squirted out (a dedicated engineer, Dutch-boy-like, stuck his finger in the hole). A diode blew, immobilizing one arm (a welder had dropped a tool into the control chassis). The auxiliary generator pooped out (brush trouble). It seemed that short circuits had their own short circuits (after all, there are 400 miles of wiring in the thing).
Such bugs are standard equipment in any complex new machine. They were cleaned up in a furious week of round- the-clock troubleshooting. But these setbacks were only the culmination of troubles that dogged the Beetle from the beginning. It was originally designed to be a robot mechanic for the atomic-powered airplane, a star-crossed project that stumbled through 10 years and $500,000 without ever getting off the ground. So the Beetle is an orphan. The Air Force, which paid $1,500,000 for it, still isn't sure exactly what it will be used for. Yet the need for machines of this type is so certain that the orphan is already fathering a whole family of newer robots. The next models, now on the drafting boards, will bear only a family resemblance to Papa Beetle. They'll be smaller and lighter, so they can be air-lifted where needed. Most will be remote-controlled–without a man inside you don't need all that heavy radiation shielding.  
The Beetle does carry a man. That makes it more versatile. But it also requires some of the most elaborate engineering ever lavished on any ground vehicle.

beetle-ps-2-x640
It looks like a tank because the chassis is reworked from an Army M42 40-mm. gun carrier. A 500-hp supercharged Continental six speeds it along roads at 10 m.p.h., but there's also an electrical drive by which it creeps 15 feet per minute. It could wrench the concrete all off a test cell without grunting hard–drawbar pull is 85,000 pounds.
The cab, however, is nothing like a tank turret. It not only turns around and around, but moves up and down 15 feet on four stainless-steel legs (built like hydraulic auto lifts). These movements are precise but slow, for that cab weighs 50 tons.
The walls are made of foot-thick lead covered inside and out with half inch steel plates. The entrance hatch is a tight-fitting cork of lead directly over the operator's head. It alone weighs 7 1/2 tons.  
The hatch offers the only way in or out.

beetle-ps-5-x640
Understandably, there are four separate mechanisms for raising it: the regular hydraulic system, the battery-powered hydraulic pump, a hand pump on the operator's left armrest, and hand pump outside the cab.
Even with the four independent emergency outs, the operators seat is still no place for a guy with claustrophobia. It's eerily  oppressive even when the hatch is wide open (I tried it). Those 50 tons of lead and steel form the most effective suit of armor ever wrapped around a single man. It cuts down atomic rays by 3,000 times. That means the operator could put in a full day's work where the radiation level was 3,000 roentgens per hour. Unshielded  exposure to such intense radiation would  probably kill him after 10 minutes.  
The man who will seal himself inside this massive machine is young, flamboyant Randall Scraper, who comes from Indiana, but is always called Tex. Scrapper is one of the most skilful of an elite corps of technicians, the professional manipulators.

These specialists perform the same work as any repairman–taking machines apart and putting them back together again. But there is one big difference: The manipulators work on machines too "hot" to get close to. They cannot touch their work or even their tools. Everything must be done at long range with mechanical arms.

No sense-no feeling. The arm is a stainless-steel boned, electrically muscled copy of human equipment: shoulder, upper arm, elbow, forearm, wrist, and hand. The joints are superhuman: They spin around and around as well as bend. The hand is usually a two-fingered claw that can grasp and manoeuver parts or tools: but it can be snapped off and replaced by any of any specialized types–a socket-tipped finger, for instance.

The steel hand cannot feel, however, and that is a serious loss.You can't tell whether you are crushing something or holding it too loosley it will fall. (Dropping a nut or screw seldom matters: spilling a can of radioactive material could tie things up for weeks.)

Working with mechanical arrms is like playing the nickel-in-the-slot claw machine at an amusement park–and snaring the toy compass every time. It takes unusually sensitive coordination as well as icily calm concentrating–outwardly at least. Tex Scraper steadily chews gum and cigars, often both at once. But he possesses the supreme patience to devote eight hours to removing one nut from a bolt.

"I can do that,: Scraper drawls. "because I turn my ears off. People are always watching, trying to help. 'A little to the right,' they tell me. Well, it may be their right and my left. So I've taught myself to pay no mind. I don't even hear them."

The Beetle is worth its cost solely to take Scraper and his mechanical arms up close to the hot nuts and bolts. He gets safety and a clear view of the work (not perfect, yet better than television). But he pays for these advantages with total isolation.

The operator is sealed tight a mummy. There is barely space to wiggle a foot; standing or stretching is out of the question. His only direct connection to the outside world is an air intake.  
(The duct zigzags, like the entrance to a photographic darkroom so that radiation cannot "shine" in. Special filters are unnecessary because the air itself does not become radioactive.)    
A three-ton air conditioner keeps Scraper cosy (72 to 76 degrees, 60-percent humidity) even if the temperature outside plummets to 25 below or flames to 130 above zero. He talks to base by radio (two separate transmitter-receivers) or public-address system.    
There's even a microphone out front so that he can listen to the engine.

beetle-ps-1-x640
A room with a view. Even more elaborate are the arrangements for looking out.
To go with the windows, there are two pairs of binoculars on swinging mounts; with them Scraper can read the scale of a standard micrometer gauging parts many feet distance.
There is a retracting, submarine-style periscope that rotates and tilts.
Finally there is closed-circuit TV. The screen sits between his legs. One camera is clipped to the cab, like a pencil in a man's breast pocket. It can be picked up and moved around by the mechanical arms. Two fixed cameras point to the rear so that Scraper can see what's going on behind him–outside rear-view mirrors are impractical.
The Beetle's cab even includes a few luxury accessories: a comfortable, power adjusted chair, ash tray, lighter. Most important of all, perhaps, is an oxygen bottle. If absolutely everything went wrong, it could sustain Scraper for eight hours. Presumably that would give time to haul the machine out of danger, cut the cab open, and free him.

Source: Popular Science, May 1962.


robot-archive-beetle-x640

Built by Jered Industries in Detroit for General Electric's Nuclear Materials and Propulsion Operation division, the Beetle was designed for the Air Force Special Weapons Centre, initially to service and maintain a planned fleet of atomic-powered Air Force bombers. According to declassified Air Force reports, work began on the 'Beetle' in 1959, and it was completed in 1961.

It has also been said [Halacy, "The Robots Are Here!", 1965] that the Beetle was built for NASA's "Project Rover", a nuclear rocket development program.


 Life Magazine, 4 May 1962 had a brief article and a couple of pictures of the Beetle.

tele-manipulator-x640

Beetle showing its versitility by putting an egg on a spoon. Not bad given the size and types of grippers, and lack of tactile feedback to the operator.

USAF-beetle-robot-x640

A startled look as the Beetle is spotted in the make-up mirror.

1961-ge-beetle-press-1-x640

beetle-kennedy-press-1 - Copy-x640

President Kennedy (back to camera) having a look.

hjbeetle2 - Copy-x640

beetle-modestobee22feb1962-x640

beetle_0012 - Copy-x640

Beetle-a-_0006-x640

beetle-remote-manipulator-pic - Copy-x640


The Beetles' Arms and Hands

Beetle-arm-GM-pat-2-x640

The General Mills arm used in the Beetle is very similar to this arm descibed by patent US3247978. Karl Neumeier was one of General Mills engineers.

Beetle-Gripper-GM-pat-1-x640

The two-fingered hand is also described in the patent and is most likely the same if not very similar to that used on the Beetle's manipulator arms.

beetle-manipulator-hand-x640

par-hook-hand-beetle-x640

General Mills Hook-and-anvil hand. {Image says PaR Systems, which was a spin-off from General Mills]

 

beetle-life-14-General-Mills-x640

The General Mills logo on the manipulator arm.

beetle-remote-manipulator-diag-x640

beetle-remote-manipulator-dimensions-x640

beetle09-x640

hotSoup13-x640

hotSoup21-x640

hotSoup22-x640

PaR-m550-diag2-x640

PaR-m550-diag3-x640

PaR-m550-diag-x640

PaR-m550-pic-x640


18nj0o4hj5ly4jpg-x640


In the Life Magazine article mentioned above, Getty-LIFE have a lot of images from that photo shoot. They appear in the photo gallery below.

Invalid Displayed Gallery


See other early Teleoperators and Industrial Robots here.


Tags: , , , , , , ,

1965 – G.E. Lifting Boom – Edwin E Ziegler / Ralph Mosher (American)

Source: Popular Mechanics, Aug 1965.

Ralph Mosher bending over the Pedipulator. Possibly Ed Ziegler in the background.

G.E. Lifting Boom


Publication number US3333716 A
Publication date Aug 1, 1967
Filing date Dec 28, 1965
Inventor: Edwin E Ziegler
Original Assignee Gen Electric

ABSTRACT OF THE DISCLOSURE A material handling device having an extensible lifting boom carried by a hoist and carriage and controlled by a handle. The carriage is mounted for rotation about vertical pivots to accomplish azimuth rotation of the boom. The azimuth motor is located in the base of the hoist and the boom is pivoted in the carriage for vertical movement. A hydraulic cylinder mounted between the boom and carriage imparts vertical movement to the boom and an extensible cylinder causes the extensible boom to extend or retract. In each motion there is spatial correspondence between the control element and boom tip and also a diminished force is fed back by lever systems from the boom to the control handle to give feel.

My invention relates to a hydraulically operated boom. This invention relates particularly to a hydraulic boom having return feel and has correspondence of movement between a control handle and the boom in azimuth and elevation. The apparatus will be described particularly in relation to a boom but is understood to be equally adapted to remote control of devices such as guns, power shovels or any other extended member wherein the characteristics of this invention are important.

In the movements of objects, it is a common occurrence that one wishes to move an object under load. When one wishes to move some object against a force of some sort, it is advantageous to have a feel in the control handle or shaft which corresponds to the amount of force put forth in overcoming the resistance to such movement. It is further advantageous if there is a spatial correspondence between the control handle and the object being moved. If both feel and spatial correspondence are present in the apparatus, the operators situation is most analogous to his physically moving the load. In prior art machines where these characteristics are absent, the operator must spend time to learn a new set of relationships between movement and feel of the control handle and the movement of the load.

A chief object of the present invention is to provide a lifting boom having a return feel which is a small portion of the force being exerted and having a spatial correspondence between the boom and the control handle. With my invention, the operator can position the load with deftness and accuracy.

Another object of this invention is to provide a system adaptable to control any device pivoted for universal movement.

Another object is to provide a compact easily controllable system for hoisting loads wherein the operators control movements are the same as he would use in physically moving the load. Thus in an emergency the operators spontaneous reactions are most likely to be correct.

Another object of my invention is to provide a device capable of doing the work of one or more men with corresponding less work and fatigue to the operator.

Another object of this invention is to provide a single control element or actuator for operating a plurality of operating motors in conjunction to accomplish the single purpose of moving an object about a pivot.

These and other objects will be more readily perceived from my description which follows.

Briefly stated, my invention is a control device which operates to move any extended member about a pivot in azimuth or vertically and to change the length of the extended member. The movements of the extended member correspond in direction to the movements of the single control member. In addition, some of the force applied to the extended member is fed to the control member to give it feel. Thus the extended member moves in the direction of motion of the control member and some of the force applied to the extended member is fed to the control member. In this way the operator will know the direction of motion of the extended member and will have an idea of the amount of force being applied to the extended member.


Mosher’s future concepts of his CAMS concept included options for the Boom.


See other GE CAMS here:

GE yes man robot life28may56p125 x80 1969   GE Walking Truck   Ralph Mosher (American)1956- GE Yes Man
Mosher ge handyman Hula x80 1969   GE Walking Truck   Ralph Mosher (American)1958-9- GE Handyman – Ralph Mosher
Pedipulator  Walker S MFeb63 x80 1969   GE Walking Truck   Ralph Mosher (American)1962 – GE Pedipulator – Ralph Mosher
GE Walking Truck Mosher x80 Early Teleoperators, Exoskeletons and Industrial Robots1969 – GE Walking Truck – Ralph Mosher
Man Mate PopSciDec1969 x80 1969   GE Walking Truck   Ralph Mosher (American)1969- GE Man-Mate Industrial manipulator

See other early Teleoperators here.


 

Tags: , , , , , , , ,