Posts Tagged ‘cybernetique’

1959 – Sverdlovsk Cybernetic Tortoise – (Soviet)

English text translated from the original German: (for pictures and diagrams, see pdf below)

The Cybernetic Model "Tortoise"
Cybernetics – In recent years, a new science was born. It enables machines to replace with highly skilled human labor, eg by electronic calculators. These machines are very complicated in structure, and only specialists with high qualifications to deal with them properly.
To the study of cybernetics are very well cybernetic models with information stores, which the animal brain can exert partial analog functions. One such model is the "turtle" developed by the Institute of Automation and robot of the Academy of Sciences of the USSR. Publication of its construction in the magazines "knowledge is power" and "Radio" No. 3/1958 encouraged the study groups for robot and automatic Young engineer at the stations in Sverdlovsk region at this, even to make such a model.
Figure 11
View of the model
The present article is roughly the construction of such a "turtle" described, it is very easy as standardized components can be used.
The main task of this model is to help the students of the upper classes while the basics of automation and cybernetics studieren.1
The behavior of the "turtle"
Observed the movements of the "turtle" obstacles creates the impression that they possess animal-related reflections. Reacts to light you on audio signals and also bumping into.. Though primitive, but it has an organ of sight, hearing a , a sense of touch and memory (memory with a conditioned reflex can be briefly formed).
Here is the proof of their sensitivity to light., The "turtle" moves in a circle on their base until they discovered the source of light is the light beam detected, it moves straight to the lamp to the visual system consists of a photoresistor This photo resistor switched on.. light on the relay d 1 the control magnet (Part VII) from, so that the move can "turtle" straight. Here comes the "turtle" an obstacle, they returned a short run to move again after a little sideways rotation forward. This process is repeated as many times until a way is found to get around the obstacle.
Audio signals to the "turtle" reacts in the following way: If a whistle is given, it will stop for about a second.
The interesting thing about the "turtle" but their "memory", which is the formation of a conditioned reflex of importance. A conditioned reflex occurs whenever different, but at least two stimuli are combined. For the "turtle" the combination of sound and shock stimuli was chosen. Exceeds the "turtle" an obstacle and at the same moment you will hear a whistle, the result is a conditioned reflex. Now "suspects" the "turtle" at every whistle a
1 The "Turtle" is a principled solution for a cybernetic model that responds to three stimuli and can emerge a "conditioned reflex". There are of course also other variants, you can work with transistors that use other relays and also make the program more extensive. However, this model is to encourage the work of communities of our country to deal with such problems and also to develop new technical solutions in creative work.
Obstacle and executes the corresponding movements to bypass the obstruction. After a certain time (this time is determined by the corresponding timer) goes out of the conditioned reflex again, if not both stimuli occur simultaneously again.
Cybernetic models have generally fulfill an experimental feature. With them it is possible to simulate individual processes of the nervous activity of the living organism. Analogies are derived from the behavior of living organisms and machines for the development of automatic information processing systems is of utmost importance. This makes it possible logical actions performed by the person on the basis of information to transmit cybernetic machines or mechanisms. This has great significance for the growth of labor productivity. The introduction of automatic regulation and control in the production always leads to a significant acceleration of production and to increase the quality. Automated systems and aggregates react precisely, not tired and are less sluggish than man.
The circuit of the "turtle"
In the overall structure and the "turtle" there were the following problems to solve:
1 Recording the information (light, sound, shock). Forward to a computing element and storing the information in the formation of the conditioned reflex.
2 Realization of the output information by movement of the drive and control mechanisms. To achieve these objects both electronic and electro-mechanical units are required.
The schematic diagram (Fig. 12) shows the circuitry recording, processing and transformation of information into control operations. For a better overview, the individual units were included only in the block.
Part I
As a photo sensor resistor is used. It is also a photocell or a photo element to use, but then an electronic amplifier is required. The potentiometer 1M ohms lin is used to control the sensitivity of the photoresistor. The sensitivity
11 part
As a simple two-pole contact feeler is used. By the contact of the circuit of the left coil of the relay d 2 is closed when pushed. This is triggered by relay d 4 and d 5, the backward and sideways movement. The timer IV (Z 1) finished the operation after a short time.
Figure 13
The photoresistor circuit for Part I
24V Figure 14
Circuit of the touch probe for Part II
Figure 12 a schematic diagram for the technical operation of the turtle
Part III
As a probe microphone (single crystal microphone) is used. A two-stage amplifier where the incoming audio signal is enhanced in that a rectifier bridge in the left coil of the relay 3 d, a corresponding current flows. It is recommended that the sound frequency of the amplifier set so that only signals of a particular frequency will be processed in order to avoid interference from external noise.
Figure 12b with this circuit for the relay d 1 and d 4 maneuverability at around obstacles can be increased
is set so that the photo-resistor is not responding to diffuse light. For this reason, the use of a simple lens (Fig. 18) is very convenient.

Figure 15 circuit of the microphone amplifier for Part III (the tubes correspond about our EF 14)
When switching the relay relay d 3 d 6 is turned on and brought the turtle briefly to a halt. The duration of this operation is controlled by the second timing element (Z 2).
Part IV
The two timing elements Z 1 and Z 2 have a memory function. The incoming signal triggers an operation and will be for a short time (the duration is determined by the combination of C 2, R 6 set) is stored. No signal, the circuit for both windings of the relay d 2 and d 3, and C 2 is interrupted current. If a signal that flows in the left-hand winding of the relay power d 2 or d 3, and switched by the relay. Here, C 2 invites to over R 6 and the glow lamp ignites. Thus, the circuit of the right coil of the relay is closed briefly and the process ends. The circuit is therefore only briefly closed because it is unloaded immediately after switching the capacitor C through R 1 second For this circuit polarized relays are provided with zero position. However, it can be used with two windings, simple relays, however, the circuit has to be changed.
Figure 16
Circuit of the timers (Z 1, Z 2) of Part IV
Part V
The timer Z 3 is required to form the "conditioned reflex." If simultaneously on II and III, a signal, then the relay d 4 and d 6 set the grid of the tube for a short time to ground and discharging the capacitor C 10 . makes the anode current and the relay d 7 increases attracts. According to charging of C 10 drops in the tube again, the anode current., the time for charging of C 10 corresponds to the duration of the "conditioned reflex" (for the present model were about two minutes selected).
Figure 17
Circuit for the timer Z 3 in Part V
Part VI
As a drive motor an electric motor is used 24 V with the field winding. Ports 1 and 2 are for the field winding and are used to change the direction of rotation by the relay d 5 reversed. Via the terminals 3 and 4, the armature of the motor is fed.
By Relais d 6 is the exchange Contact 6b in a sound, the power supply is interrupted to the collector and the model stopped for a short time. The speed should be about 5 to 10 cm / s. With appropriate variation of the circuit can be used also a Permamotor.
Part VII
This part constitutes an electromagnet by means of which the circular motion of "tortoise" is controlled. Smaller no light on the photoconductor, then the circuit of the electromagnet is closed. This
Figure 18 look for the photo resistor
Figure 18a The turtle Elsie
On the shell of the turtle a candle (1) had been secured, a second candle (2) was placed at some distance. Between the candle and the turtle was a barrier (3). The shutter of the camera was opened and the turtle was left to itself. Your path is recorded in the photo. (4) starting position of the turtle (it starts moving toward the light source). (5) collision with the obstacle. (6), bypassing the restoration of the obstacle and movement direction of the light source. (7) The turtle happened to approach very close to the candle, the light was quite strong, the turtle was forced to retreat, they bypassed the candle. (From: IA Poletayev: Cybernetics German VEB Verlag der Wissenschaften, Berlin 1962, page 233.)
Figure 19 Base plate with drive and control
is given to the steering wheel, a rash of 20 °. In light relay drops d 1, and the steering wheel gets a straight-ahead position.
The mechanical structure
The "turtle" has an oval shape and the drive control is initially in the size of 220 mm X 290 mm. Built on the base plate. Assembly of electronic equipment should be done only when the drive and control function properly.
The chassis is composed of three rubber wheels, the diameter should be about 50 to 60 mm.
The Figure 19 shows the basic mechanical structure of the drive and the controller. For driving a double worm reducer was chosen because it allows the use of small gears. The arrangement of the worm gears and is shown in Figures 20 and 21.
Figure 20 Cross-section A A
Figure 21 section B B
7 [28004]
At the intended speed of 50 to 100 mm / s and the given wheel diameter, the rotational speed of the drive shaft does not exceed 20 to 30 U / min. In the example used with 32 and 24 teeth for a motor with 6000 to 8000 r / min and two common worm gears. If other wheels or a different motor is used, the reduction must be recalculated.
Greater friction loss can be avoided if only one wheel is rigidly connected to the drive shaft.
Figure 22 Cross-section C C
The principle of the magnetic control is seen in Figure 19 and 22. The steering wheel is located in a fork, in which a lever is attached. On this lever is effected by the solenoid, the spring, or a control stop. The stop control should be about 20 ° when the electromagnet. The steering wheel by the coil spring is held in the normal position.
Freely edited by a methodical instructions of the station Young Engineers in Sverdlovsk, published in 1959.

 See pdf of referenced chapter here

Sverdlovsk, name of the city of Yekaterinburg, Russia, from 1924 to 1991
Sverdlovsk, Ukraine, a town in Ukraine.

I suspect this Tortoise is from the Russian Sverdlovsk, not the Ukraine.


Tags: , , , , , , , , , ,

1956 – CYSP-1 – Nicolas Schöffer – (Hungarian/French)

Although built as an art piece, Nicolas Schöffer's CYSP-1 (a name composed of the first letters of CYbernetics and SPatiodynamic) is significant both in terms of the introduction of a new art form, as well as being a serious attempt  as an autonomous "being".  Schöffer was the first artist to be inspired by the new science of Cybernetics, and went so far as to describe a whole cybernetic city based on his so-called "Spatio-Dynamics".

Before showing some early articles about CYSP-1, I want to briefly describe the functions it performs. To put it into context, given the usage of "electronic brains" that prevail in the articles, I thought I would give the components of  "electronic brains" as they were thought of at the time (i. e. mid 1950's).

Essentially they are:  SENSORY ORGAN -> NERVE SYSTEM -> BRAIN -> MUSCLES

One expects Schöffer’s CYSP-1 to conform to this early definition of "electronic brain".

Philips were sponsors for CYSP-1 and the earlier "Spatio-dynamic tower".  One of the articles in the book "Nicolas Schöffer" describes the "homeostatic" electronic brain used in tha tower sculpture.  Based on the descriptions on CYSP-1's behaviour, it, too, appears to be modelled on the homeostat. The homeostat, as first described and modelled by Ashby, essentially seeks an equilibrium point when it gets out of balance.  CYSP-1 is a homeostat on wheels.

For completeness, I'll make the "Spatio-dynamic tower" homeostat comparison with CYSP-1 here:

From an article in the book "Nicolas Schöffer":

" a homeostat constantly seeks to establish a balance which is perpetually disrupted, and performs a statistical exploration of all the possible combinations of inputs.
The actual research on the apparatus is guided by a triple determinism which integrates:
1. one element of uncertainty created by an "indifferent cell," which systematically makes use of chance;
2. one element of "sensorial reactions" which integrates the effects of the sound atmosphere, of the light atmosphere and of the heat atmosphere;
3. an "internal determinism" created by the feedbacks of the various active chains among one another, in order to liberate the machine progressively. Its degree of liberty can easily be modified.
The objective sought is above all of an experimental order. As for electronic animals, the synthesis of the faculties must be effected very gradually, and the behavior of the "models" man makes of himself must be observed. This exploration by the "models" of physiology, psychology and sociology marks the opening of a new path in research."

In point 2, CYSP-1 is affected by sound intensity, by light intensity and heat (an interpretation of the colour of the light eg red=warm, blue=cold).  Sound is detected by microphone input, and CYSP-1 reacts by being excited by silence and is calmed by noise. Photoelectric cells detecting colour are excited by the color blue, which means that it moves forward, retreats or makes a quick turn, and makes its plates turn fast; it becomes calm with red. It is also excited in the dark and becomes calm in intense light. CYSP-1 has total autonomy of movement (being travel in all directions at two speeds) as well as axial and eccentric rotation, and the setting setting in motion of its 16 pivoting polychromed plates (11 rectangular, 5 disc). This is the internal feedback talked about in point 3 above, and is the BRAIN, in this case a homeostatic one. "Liberating the machine" can be seen as a general reference to the  MUSCLES in the "electronic brain" model above.

When used for dancing or outdoor movements, there was a radio remote control to ensure safety to nearby people and CYSP-1 itself.  Later on, CYSP-1 is fitted with some photo-electric cell sensors underneath the base that detect dark and light. This way, if a dark line is drawn to create a closed space, CYSP-1 will not cross that line and keep its movements within that space. This is evident in the Paris Atelier today where CYSP-1 normally lives. (see pic below). 

A point of interest I learned when talking with Eleanor (2009) is that Nicolas put in place a directive that in order to keep the sculptures operational over time, that the use of current technology be deployed, rather than conserving or restoring older technology that will prove difficult to service or get spare parts.

CYSP-1 is about 8 foot tall.

Flat batteries in December of 1956.

From “Practical Robot Circuits” A.H. Bruinsma – a Philips Technical publication

This extract is to provide the reader with a contextual and period definition of “electronic brain”.  Large computers were very new and mini-computers were yet to be invented.  These “electronic brains” are very different to modern digital computers.

"Robot circuits comprise certain elements which, although more highly developed or specialized in some circuits than in others, are nevertheless common to all of them, as follows (see fig. 1).
Fig. 1. Basic elements of a robot circuit.
1. sensory organ, that is, a portion of the circuit capable of picking up (or observing) different stimuli and converting them into electric current or voltage; accordingly, there are many different types of sensory organ;
2. nerve-system, that is, the portion of the circuit which modifies the current or voltage so that it may be applied to and used in:
3. the brain, or portion of the circuit sorting and processing the data from the nerve system, and possibly storing them (memory) before transmitting them to:
4. the muscles, or portion of the system producing the desired reaction to the stimuli picked up by the sensory organs.
With human beings and animals it is often difficult to discern where the nervous system ends and the brain begins; so also with many robot circuits.
It will be evident that the above names are chosen to emphasize the similarity between the synthetic elements referred to and living organs of the human body. Although there is nothing against this in theory, it will be seen later that in reality electronic organs often function very differently from the human or animal equivalents. At the same time it will also be seen that the temptation to draw a parallel between them, occasionally, has proved irresistible.
As we shall see, then, electronic sensory organs range from the rudimentary to the highly sensitive. They are sometimes inferior, sometimes equal, and in many cases superior, to human sensory organs.
Electronic nerve systems, although comparable in speed and accuracy to the human nerves as conveyors of information, cannot in any one machine equal them for complexity.
In the matter of brains, electronics is definitely outclassed. Electronic brains, without the gift of creative reasoning, are comparable only with the portion of the human brain governing reflexes, or actions performed instinctively, without thought.
Electronic memories, on the other hand, are best as regards reliability, being capable of storing up to ten thousands different items of information indefinitely; however, their capacity is very limited compared with the enormous variety of information assimilated by the human
Because this may suggest that on the whole electronic robots are barely on par with the lowest known species of animal, it should also be borne in mind that for practical applications they are so specialized for strictly limited tasks as to be, within the particular province, far superior to human operators; hence their importance to mankind.
It is typical of the world in which we live that everyone must specialize in order to be reasonably efficient, and electronic robots carry specialization far beyond what any man can hope to achieve."

CYSP 1, the first cybernetic sculpture
CYSP 1 (a name composed of the first letters of cybernetics and spatiodynamic) is the first " spatiodynamic sculpture " having total autonomy of movement (travel in all directions at two speeds) as well as axial and eccentric rotation (setting in motion of its 16 pivoting polychromed plates).
Nicolas Schöffer has executed this spatial composition in steel and duraluminum, into which an electronic brain, developed by the Philips Company, has been incorporated.
The whole is set on a base mounted on four rollers, which contains the mechanism and the electronic brain. The plates are operated by small motors located under their axis. Photoelectric cells and a microphone built into the whole catch all the variations in the fields of color, light intensity and sound intensity.
All these changes occasion reactions on the part of the sculpture consisting of combined travel and animation. For example: it is excited by the color blue, which means that it moves forward, retreats or makes a quick turn, and makes its plates turn fast; it becomes calm with red, but at the same time it is excited by silence and calmed by noise. It is also excited in the dark and becomes calm in intense light.
Inasmuch as these phenomena are constantly variable, the reactions are likewise ever changing and unpredictable, which endows the mechanism with an almost organic life and sensitivity.
CYSP 1 launches upon an adventure unique in the history of art. It participates in artistic life on multiple levels.
In an actual spectacle, it dances in ballets with one or several human partners. It takes its place in motion pictures. An abstract film, for instance, is being planned, using all possible visual effects, such as the stroboscopic effect which occurs when its polychrome plates turn at the speed of light vibrations, giving an effect of immaterial colored blends; its shadow projected in movements gives the spectacle a double effect. Its transparency confers upon it multiple partially arrested aspects. It can adapt itself to the theater and participate in exhibitions.
It constitutes a living counterpoint, a new and harmonious contrast with the articulated movements of the undulating bodies of humans by its evolutions and its transparent, orthogonal and metallic structure.
This artificial being is the prototype of a whole series of other spatiodynamic sculptures which could stage a great cybernetic spectacle on the ground and even in the air, thus creating a true synthesis between the most advanced aesthetic conceptions and the most up-to-date scientific means, capable of multiplying their attractive possibilities tenfold.
The making of an animated spatiodynamic sculpture marks the first attempt at allying abstract sculpture and choreography. Both of these, reflecting as they do a comparable artistic expression, have been fused into a single object thanks to electronics and to cybernetics.
Maurice Bejart showed this robot-dancer for the first time in 1956 in a ballet performance. He executed with it a pas de deux to the accompaniment of a concrete music composition by Pierre Henry.
Spatiodynamic sculpture, for the first time, makes it possible to replace man with a work of abstract art, acting on its own initiative, which introduces into the show world a new being whose behavior and career are capable of ample developments.
Cysp 1, 1956, the first cybernetic sculpture with autonomous movements on the stage of the Sarah-Bernhardt Theater

and from the book “Nicolas Schöffer” – Essay “From Space to Time” by Guy Habasque.

This excursion into the realm of electronics made Schöffer even bolder and gave him the idea of resorting to cybernetics to animate his sculptures. The dynamism he had achieved, interesting though it was, had thus far remained what I have elsewhere called a " static dynamism " (dynamis, in fact, means power and not movement). It is true that he had already tried, in 1950, in a " spatiodynamic clock ", to introduce real movement by supplying the sculpture with little electric motors, but cybernetics opened up to him a much vaster field of action, and even made available to him combinations of movements in practically unlimited numbers. Above all it introduced a real element of indetermination in the kinetic behavior of the work. After a good deal of difficult research, and very delicate developing and perfecting (carried out in collaboration with Francois Terny, an engineer of the Philips Company), Schöffer, on May 28, 1956, on the occasion of the " Night of Poetry " in the Sarah Bernhardt Theater in Paris, presented his first "cybernetic sculpture ", CYSP I, the name of which is formed by the first two letters of the words " cybernetics " and " spatiodynamics " respectively. This mechanism, capable of articulated movements and locomotion without the direct help of a human agent, seemed endowed with an almost organic sensitivity. I say " seemed ", for it is quite obvious that no sculpture can be compared to a living being. Nevertheless, as anyone knows who has studied cybernetics a little, once the machine has been fed " information ", it acquires real autonomy of action. Provided with an electronic brain (concealed in its base), acting on a system of motor organs, CYSP I moves at two different speeds while putting into motion its sixteen pivoting polychrome plates. By virtue of a system of photoelectric cells and microphones, it is sensitive to all variations occurring in the realms of color, light intensity and sound intensity. A blue light, for example, emitted by a projector, produces a rapid movement, whereas a red light calms it and causes its movements to slow down. Likewise, it is excited by silence or darkness and calmed by noise or a bright light.

Despite the outcries of old-fashioned aestheticians who are always afraid of not finding the creator revealed in his work, the application of cybernetics opens immense horizons to the plastic arts. The possibility of animating space in an entirely new way is indeed coupled with the introduction of a temporal element which had never been taken into account in the conception of a work of art. Space and time are henceforth indissolubly linked. Moreover, the work of art is no longer an inanimate object, which can be taken in at a glance, but constitutes of itself a whole spectacle. This aspect has led Schöffer to stress what might be called the " theatrical " possibilities of these sculptures and to have CYSP I participate in certain shows, in particular in choreographic shows. Thus Maurice Bejart, who was then the director of the " Ballets de l'Etoile ", composed specially for it a ballet which was first shown in August 1956 at the first Festival of Avant-Garde Art in Marseille, on the roof of Le Corbusier's famous housing unit. He used the sculpture in conjunction with human partners, the flexibility and grace of the dancers creating a very striking and effective contrast with the rigid and orthogonal lines of the spatiodynamic skeleton, Pursuing his research, as always, to its ultimate consequences, Schöffer a little later conceived and executed the model of a theater specially designed for "cybernetic spectacles ", and for a long time he has even been entertaining plans for aerial spatiodynamic ballets. The theater is roofed over with a flattened semispherical dome beneath which the tiers of seats for the spectators rotate round an axis, while the ring- shaped stage also rotates, but in the opposite direction, round the center. In contrast to the customary arrangement the spectacle (cybernetic and human ballets, luminodynamic projections, etc.) consequently unfolds on the walls, and the audience also moves to follow the various elements that compose it. In the aerial ballets, space itself will serve as the stage, with the sculptures in movement evolving in the air, like helicopters.

Note on the homeostat produced by the Philips Company for the International Building and Public Works Exhibition, Paris 1955
An electronic brain is being built which will associate notes so as to compose constantly varying musical motifs. This will be effected by means of a homeostat which constantly seeks to establish a balance which is perpetually disrupted, and performs a statistical exploration of all the possible combinations of notes.
The actual research on the apparatus is guided by a triple determinism which integrates:
1. one element of uncertainty created by an " indifferent cell, " which systematically makes use of chance;
2. one element of " sensorial reactions " which integrates the effects of the sound atmosphere, of the light atmosphere and of the heat atmosphere;
3. an "internal determinism" created by the feedbacks of the various active chains among one another, in order to liberate the machine progressively. Its degree of liberty can easily be modified.
The objective sought is above all of an experimental order. As for electronic animals, the synthesis of the faculties must be effected very gradually, and the behavior of the " models " man makes of himself must be observed. This exploration by the " models " of physiology, psychology and sociology marks the opening of a new path in research.
Secondarily, the machine will produce anharmonic musical motifs, many of which will be of no great interest and will constitute a background of sound, while others will appeal to the ear. The sound material, pre-recorded by Pierre Henry, the composer of concrete music, author of the Voile d'Orphée (The Veil of Orpheus), will always be interesting and rich.
The sounds heard do not exist in nature any more than the associations of sounds invented by the machine are referable to our consciousness of harmony.
J. BUREAU Consulting engineer

from the French science magazine Science et Vie, September 1956

 “CYSP 1”
danseuse-étoile est un robot
Un étrange spectacle nocturne s'est déroulé le 8 août à Marseille sur l'immense terrasse qui coiffe l'immeuble Le Corbusier.  Pendant que des danseuses évoluaient gracieusement devant une sculpture abstraite faite de cornières d'acier et de feuilles de cuivre, un projecteur rouge s’alluma soudain. Les sons bizarres d'une musique concrète retentirent et, telle la statue du Commandeur, la sculpture s'anima brusquement. Elle entra dans la danse,
avantant et reculant sur des cadences inattendues, faisant vibrer ses pales métalliques, mêlant ses glissades compliquées aux mouvements souples des corps humains.
« CYSP 1 », premier robot danseur, venait de faire ses premiers pas. OEuvre du sculpteur Nicolas Schöffer et des ingénieurs de la société Philips, cette machine, unique en son genre, inaugure une nouvelle étape de l'histoire de l'art et des techniques. Grâce à des mécanismes électroniques télécommandés ou programmés selon un thème précis, ou encore déclenchés par des variations de température, de sons ou de lumières colorées, elle peut se déplacer et vibrer en tous sens. Elle sera prochainement la vedette d'un-film et fera son entrée théâtrale cet automne à Paris. Nicolas Schöffer a réalisé, en 1955, la « Tour Chantante » de la première exposition internationale de Bâtiment à Saint-Cloud. Il est le chef d'une nouvelle école artistique dite « spatio-dynamique ».
Certaines de ses oeuvres sont déjà exposées dans des musées ,aux Etats-Unis.

Au pied du robot, la danseuse Claude Bessy et deux ingénieurs de la Société Philips (à droite). L'ensemble de « CYSP 1 » est fixé sur un socle monté avec 4 roulettes mues par des moteurs électriques commandés par un cerveau électronique. Des cellules photoélectriques et des microphones captent des messages programmés sur un pas de danse : chaque plaque colorée des bras de la machine se met alors à vibrer et à tournoyer sur des rythmes différents combinés avec les déplacements du robot et ceux des danseurs.

Cet être artificiel, campé sur les roulettes de caoutchouc de son cerveau électronique, est, selon les projets de Nicolas Schöffer, le prototype de toute une série de sculptures animées « spatio-dynamiques » qui seront les vedettes de grands spectacles cybernétiques. Des fusées, des avions, des hélicoptères, de la brume artificielle colorée, des projections lumineuses dans l'espace compléteront les entrechats mécaniques de ce peuple de robots dont les ombres en mouvement doubleront le spectacle.
Nicolas Schöffer prévoit aussi l'adjonction d'un homéostat à ses sculptures-robots : mouvements d'ensemble, variations isolées seraient déclenchées par la modification du milieu ambiant : température, hygrométrie, lumière du jour, sons et couleurs.
Grâce à cette animation, proche de certaines formes de vie organique, les sculptures spatio-dynamiques ne resteraient pas cantonnées sur la scène des théâtres ; exposées au regard des passants dans les grandes artères des grandes villes, elles constitueraient un spectacle permanent « son-lumière et animation » et permettraient aux citadins d'échapper parfois au sentiment de claustration provoqué par la laideur de certains quartiers d'habitation.
Ces sculptures, dignes de la science-fiction, rempliraient un rôle analogue, non seulement dans les pièces importantes des habitations, mais aussi dans les halls et dans les salles des grands bâtiments publics, les usines, les gares, les aérodromes, etc.
Sous cet aspect et, si l'on en croit les médecins et sociologues penchés sur ce problème bizarre, les robots abstraits de Schöffer seraient à l'origine d'une nouvelle science : la plastico-sociologie.
Cette science étudierait les effets des formes architecturales mécaniques sur le comportement de l'homme. Elle tenterait d'améliorer la qualité esthétique de cet immense cinérama qu'est devenue la vie moderne tout au fond de notre rétine. Selon ses théoriciens, l'homme normalement constitué a besoin d'une ration quotidienne de chocs esthétiques optiques ou auditifs d'une qualité supérieure. Or, cela se vérifie surtout dans nos cités vétustes, il y a généralement insatisfaction aggravée par la mauvaise qualité des « chocs ». Ce véritable « attentat rétinien » provoque à la longue des troubles psychiques : par exemple un complexe d'infériorité, puisque nous devons subir « ce qui est ». Le rôle des sculpteurs spatio-dynamiques sera de transformer cette ambiance désastreuse grâce à des proportions harmonieuses et à des couleurs thérapeutiques dosées qui réaliseront un équilibre énergétique entre la nature et le milieu artificiel où vit l'homme moderne.
Photos Frasnay et E. B. Weil.

"CYSP 1"
star-dancer is a robot
A strange night show was held August 8 in Marseille on the huge terrace, which covers the building Le Corbusier. While dancers moving gracefully to an abstract sculpture made of angle steel and copper sheets, projector suddenly turns red. The sounds of a strange sound and musique concrete, like the statue of the Commendatore, the sculpture comes alive suddenly. She entered the dance,
front and back of unexpected cadences, its vibrating metal blades, combining its complicated movements glissades soft human bodies.
"CYSP 1", the first robot dancer, came to take its first steps. Work by the sculptor Nicolas Schöffer and engineers of Philips, this machine is unique in its kind, heralds a new stage in the history of art and technology. Through electronic mechanisms remotely or programmed in a specific theme, or triggered by changes in temperature, sound or light colored, it can move and vibrate in all directions. She will soon star in a film and theater will be introduced this fall in Paris. Nicolas Schöffer produced in 1955, the "Singing Tower" of the first International Exhibition Building in St. Cloud. He is the head of a new artistic school known as "spatio-dynamic".
Some of his works are exhibited in museums in the United States.


Robot at the foot of the dancer Claude Bessy and two engineers from the company Philips (right). The whole "CYSP 1" is set on a pedestal mounted with 4 wheels driven by electric motors controlled by an electronic brain. Photoelectric cells and microphones capture messages programmed on a dance step: each colored plate of the arms of the machine starts to vibrate and spin in different speeds combined with the movements of the robot and the dancers.

This being artificial, camped on the rubber wheels of his mind, is, according to draft Schöffer Nicolas, the prototype of a series of animated sculptures "spatio-dynamic" to be the stars of big shows cyber. Rockets, planes, helicopters, fog artificial colored light projections in space complement entrechats mechanical robots that people whose shadows moving double the performance.
Nicolas Schöffer also adding a homeostatis his sculptures robots: motion picture, isolated changes be triggered by the change in ambient temperature, humidity, light, sounds and colors.
With this animation, close to some forms of organic life, sculptures spatiotemporal dynamics would not remain confined to the theater scene, set against the great passers in the streets of major cities, they constitute a permanent show "its light – and animation and allow the city to escape the feeling sometimes of confinement caused by the ugliness of some residential areas.
These sculptures worthy of science fiction, fulfill a similar role, not only in major parts of houses, but also in the halls and rooms in large public buildings, factories, railway stations, airports, etc..
In this aspect, and if you believe the doctors and sociologists discussed this strange problem, robots abstract Schöffer are the cause of a new science: the plastico-sociology.

This science of studying architectural effects on mechanical behavior of man. It attempted to improve the aesthetic quality of this huge cinerama what became modern life at the back of our retina. According to its theorists, humans normally need a daily ration of optical or aesthetic shock of hearing the highest quality. However, this was particularly true in our older cities, there is dissatisfaction generally aggravated by the poor quality of "shocks". This true "retinal attack" in the long term causes of psychiatric disorders: for example an inferiority complex because we must endure "what is". The role of spatio-dynamic sculptors will transform the atmosphere with disastrous proportions and harmonious colors therapeutic dose realize energy balance between nature and the natural environment inhabited by modern man.
Photos Frasnay and E. B. Weil.

 from the French science magazine ATOMES, October 1957

Le Robot Danseur
Le sculpteur Nicolas Schöffer a réalisé cette composition spatiale en acier et duraluminium que l'on voit ci-contre et sur la couverture de ce numéro, à laquelle a été adjoint un cerveau électronique mis au point par la S. A. PHILIPS.
L'ensemble est fixé sur un socle monté sur quatre roulettes. Dans ce socle se trouvent le mécanisme et le cerveau électronique (photo ci-dessus).
CYSP-I (abréviation de CYbernétique, SPatiodynamique) est la première « sculpture spatiodynamique » dotée d'une autonomie totale de mouvement : déplacement dans tous les sens à deux vitesses, ainsi que rotation axiale et excentrique et animation de ses seize plaques polychromes pivotantes.
Chacune des plaques ou des ailettes montées sur la charpente est actionnée par un petit moteur placé sous son axe.
Des cellules photoélectriques et un microphone intégrés dans l'ensemble, captent toutes les variations intervenant sur le plan de la couleur, de l'intensité lumineuse et de l'intensité sonore.
L'ensemble de ces changements provoque des réactions de la sculpture consistant en des mouvements de déplacement et d'animation combinés. Par exemple, elle s'excite à la couleur bleue, c'est-à-dire qu'elle fait tourner rapidement ses plaques;  elle se calme au rouge, mais en même temps elle s'exalte au silence et se calme au bruit. Elle s'excite aussi dans l'obscurité et s'apaise à la lumière intense.
Etant donné que ces phénomènes sont constamment variables, les réactions sont également toujours changeantes et imprévues, ce qui donne à l'ensemble une vie et une sensibilité quasi-organiques. Cependant, pour des raisons de sécurité, les déplacements de la sculpture sont téléguidés.
Le danseur-robot CYSP I a participé à différentes manifestations comme la « Nuit de la Poésie », au théâtre Sarah Bernhardt, le Festival de l'Art d'avant- garde sur la terrasse de la « Cité Radieuse » de Le Corbusier à Marseille.
Il pourra prendre place dans des spectacles cinématographiques. C'est ainsi qu'est prévue la réalisation d'un film abstrait utilisant tous les effets visuels qu'on peut obtenir, comme par exemple l'effet stroboscopique qui se produit quand ses plaques polychromes tournent à la vitesse des vibrations lumineuses, donnant ainsi un effet de mélanges colorés immatériels. Son ombre, projetée en mouvements, dédouble le spectacle.
Cet être artificiel est le prototype de toute une série d'autres sculptures spatiodynamiques qui, en groupe, pourront réaliser un grand spectacle cybernétique au sol et même dans les airs, créant ainsi une véritable synthèse entre les conceptions esthétiques les plus avancées et les moyens scientifiques les plus actuels, susceptibles de multiplier à l'infini leurs possibilités attractives.


The Robot Dancer
The sculptor Nicolas Schöffer created this spatial composition of steel and duraluminium shown opposite and on the cover of this issue, to which was added a electronic brain developed by S. A. PHILIPS.
The assembly is mounted on a platform mounted on four wheels. In this base are the mechanism and the electronic brain (pictured above).
CYSP-I (abbreviation of Cybernetics, SPatiodynamique) is the first "sculpture spatiodynamique" with an autonomy of movement: Movement in all directions at two speeds, as well as axial and eccentric rotation and animation of its sixteen plates pivoting polychrome.
Each of the plates or fins mounted on the frame is actuated by a small motor under its axis.
Photoelectric cells and a microphone integrated into the whole, capture all the variations in terms of color, light intensity and the intensity of sound.
All these changes cause reactions sculpture consisting of travel movements and animation combined. For example, they get to the blue, ie it rotates rapidly on its plate, it calms down to red, but at the same time excited by silence and quiet noise. As they get in the dark and subsides to the light.
Since these phenomena are constant variables, the reactions are always changing and unforeseen, which gives a life and an almost organic sensibility. However, for security reasons, the movement of the sculpture are remote-controlled.
The dancer-robot CYSP I participated in various events like "Night of Poetry," Sarah Bernhardt at the theater, the Festival of avant-garde art on the terrace of the "City Radieuse" of Le Corbusier in Marseille .
It may take place in cinematic entertainment. Thus was laid the execution of an abstract film using all the visual effects that can be obtained, such as the stroboscopic effect that occurs when its polychrome plates rotate at the speed of light vibrations, thus a colorful mix of intangibles. His shadow, projected movement, doubling the performance.
This being artificial is the prototype of a whole series of other sculptures spatiodynamiques which group can make a big show cyber ground and even in the air, creating a true synthesis between aesthetic designs the most advanced and scientific the most current, likely to multiply in their infinite possibilities attractive.

Valse à 120 volts (Article paru dans le magazine mensuel TOUT SAVOIR, septembre 1956)

Article paru dans le magazine mensuel TOUT SAVOIR de septembre 1956 (pages 37 à 39, 5 photos et 1 portrait)
suivi d'un commentaire d'Eléonore Schöffer.
L'ELECTRONIQUE, on le sait, envahit chaque jour des domaines où il eût paru invraisemblable qu'elle s'aventurât. Ainsi, le 12 juillet dernier, nous annonçait-on que l'automation avait, si l'on peut dire, mis la main sur la musique.
Mais oui : la Burroughs Corporation de Pasadena (Californie) a mis au point une machine qui, toute seule, compose des chansons ! Ainsi le "génie" contemporain a fignolé un cerveau électronique qui est capable de produire (sans essoufflement) mille mélodies populaires à l'heure, en recueillant des messages chiffrés et en les assemblant selon quelque schéma mélodique.
Vous vous dites sans doute qu'il s'agit là d'une sorte de record du monde dans le domaine, si fréquenté, de l'audace électronique.
Erreur. C'est nous, Français, qui possédons ce record du monde. Lisez bien…
Un socle cylindrique d'une quarantaine de centimètres de haut. Au-dessus, des barres métalliques plantées à la verticale. Et, s'échappant de ces barres, à hauteur d'homme, d'autres tiges, et des plaques de métal. De toutes formes, de toutes couleurs.
C'est un objet volumineux, une "chose" rigoureusement indéfinissable, sous quelque angle qu'on regarde. Cela ne ressemble à rien. Tout au plus peut-on songer à quelque combinaison de sémaphore, ou à un de ces objets insolites que les enfants construisent parfois avec les pièces de leur Meccano.
La bizarre construction s'appelle "Cysp1" . C'est une oeuvre d'art. Et aussi une machine. Une machine considérée comme une oeuvre d'art. En réalité, nous tenons là une sculpture cybernétique (la première qui existe au monde), que l'on dénomme également composition spatiale, en acier et duraluminium.
Il y a mieux. Cette sculpture, en effet, n'est pas immobile. Elle tourne, elle DANSE… Nous y voilà : Cysp1 est une danseuse. Une danseuse électronique.
Si, au lieu de rire, vous voulez bien réfléchir un instant, vous serez tenaillé par cette alternative : ou c'est prodigieux ou c'est l'oeuvre d'un fou singulièrement tourmenté par l'électronique…
Décrivons plus précisément l'engin. Sous le socle cylindrique, monté sur roulettes, se cache un mécanisme complexe et un cerveau électronique. Ceux-ci, par un assemblage d'axes, sont liés aux plaques de métal qui surmontent l'appareil. Disposées en un désordre apparemment total, on dénombre onze plaques rectangulaires et cinq en forme de disque. De dimensions diverses, elles sont toutes pivotantes et polychromes : rayures bleues et jaunes, bandes rouges, blanches et jaunes, etc… Chacune de ces plaques, est actionnée par un petit moteur, relié au cerveau caché dans le socle. Dans les recoins de l'infrastructure, sont logés des microphones et des cellules photo électriques, qui captent toutes les variations de couleur, d'intensité lumineuse et d'intensité sonore.
Là, nous touchons à l'essentiel. En effet, toutes les modifications de couleur et d'intensité affectent immédiatement l'étrange robot qui, aussitôt, entame quelque mouvement. La couleur bleue, par exemple, ou un son aigu, excitent Cysp1. Alors, la machine tourne de gauche à droite, agite ses plaques dans un sens donné, à une vitesse quelconque. Si, au contraire, vous proposez à Cysp1 une couleur rouge, une sonorité plus grave, une lumière vive, alors elle s'effraie, recule, tourbillonne sur elle-même, agite ses plaques dans un autre sens, à une autre vitesse… On devine le résultat : lorsque l'expérience se passe nuitamment, les plaques jettent frénétiquement des gifles multicolores sur les murs, comme un Kaléidoscope en folie, et l'échafaudage de tubes s'agite furieusement sur ses roues caoutchoutées.
Ces jeux apparemment incohérents de lumières et de mouvements sont réellement impressionnants d'étrangeté. Je n'y ai décelé, pour ma part, aucune beauté : Cysp1 ne m'a paru qu'un énorme jouet qui ne représente rien, et fait songer à cette fabuleuse machine si compliquée qu'un Américain fabriqua un jour… et qui ne servait strictement à rien ! …
Sculpture, électronique, ou l'une et l'autre?
A quoi répond donc cette création, géniale ou burlesque, selon les goûts ?
N. Schöffer, l'inventeur, le dit lui-même :
– Le spectacle figuratif a vécu. Et même l'art abstrait conventionnel.
Nous sommes dans une époque de rupture. Il faut suivre les précurseurs et je veux, moi, rompre avec la conception traditionnelle de la sculpture…
Nicolas Schöffer, précisons-le, est un artiste d'origine hongroise. Il a suivi les cours des Ecoles des Beaux-Arts de Budapest, puis de Paris.
– Quoi qu'on en dise, j'estime avoir subi une évolution très normale, un monde qui est de plus en plus accéléré.
N. Schöffer parle avec fougue et conviction. Front dégarni, yeux clairs, on pourrait le traiter de "prophète". Il se place, en tout cas, à l'extrême avant-garde.
C'est sans doute un visionnaire, jailli tout droit, peut-être, d'une tranche de science-fiction, d'art-fiction.
Cysp1, a-t-il dit, est une sculpture spatiodynamique. Qu'est-ce que…
– C'est en 1948 que j'ai découvert, créé le spatiodynamisme ; son but est l'intégration constructive et dynamique de l'espace dans l'oeuvre plastique. La sculpture spatiodynamique est créée d'abord par une ossature dont le rôle est de circonscrire et capter une fraction de l'espace en déterminant le rythme de l'oeuvre.
– Et alors ?…
– … Le spatiodynamisme doit bouleverser les concepts actuels de l'urbanisme. Il est logique que le dispositif d'ensemble soit conçu par le sculpteur, et non par l'architecte. Le "plastique" doit avoir le pas sur le "fonctionnel"…
– Mais votre robot-danseur ?…
– Le mouvement, la couleur et le son font partie de l'oeuvre et ils interviennent avec de constantes variantes grâce à l'électronique. La sculpture spatiodynamique est une sculpture-spectacle. Sa sonorisation est même possible en extrayant et utilisant des sons des différents éléments qui composent la sculpture…
Personnage hors série, Schöffer croit sincèrement, lui, à l'immense avenir de son insolite conception de la sculpture. Le 9 août dernier, en soirée, les Marseillais purent assister à cet évènement : Cysp1 dansa, dans la nuit trouée d'étoiles, en compagnie d'un couple de danseurs réputés, Michèle Seigneuret et Maurice Béjart, que ne rebute aucune audace. Pourtant accoutumés à la plaisanterie, les Marseillais furent médusés. Et hilares.
D'autant plus que ce gala ébouriffant se déroula sur la terrasse de la Cité Radieuse, que l'on sait être la "maison du fada" … Coïncidence fâcheuse, on en conviendra !
– Celui-là, peuchère, disait un spectateur en parlant de N. Schöffer, il a pris le soleil en plein sur la tête !…
Qu'on se moque de lui, le père du spatiodynamisme n'en a cure.
– Van Gogh était bizarre, lui aussi, à son époque…", me disait-il, l'autre jour.
J.-L. V.
N.B. On doit à la vérité de dire que sur le strict plan de la mécanique et de l'électronique, Cysp1 constitue une trouvaille assez extraordinaire.
Commentaire d'Eléonore Schöffer : Toute nouveauté scientifique ou technique est reçue avec crainte : la vitesse de 35 Km/h des premiers trains terrifiait, le coeur ne résisterait pas… Mais certains "osent" ! Quant à l'art, toute nouveauté fait rire : l'artiste est un "piqué".
Les "nouveautés" techniques et scientifiques se démodent et passent, remplacées par d'autres, plus performantes… Les nouveautés artistiques s'apprécient autrement avec le temps… L'impressionnisme… Van Gogh pour lequel se dépensent des sommes fabuleuses! L'art gagne en valeur avec le temps mais c'est aussi avec le temps que la société évolue suffisamment pour devenir capable de comprendre et d'aimer. L'artiste paraît "en avance" lorsqu'il est simplement en prise directe sur son temps, alors que c'est la plus grande partie de la société qui est en retard, agrippée qu'elle est à des habitudes et des valeurs dépassées, méfiante pour toute nouveauté, et paresseuse à s'adapter mentalement à des processus plus complexes.
Il faut pour tout chercheur de grandes qualités de force, de courage, de fidélité à soi-même pour résister aux sarcasmes, obtenir des décideurs leur confiance, et la possibilité de réaliser ce qui était "impensable"…
Ce fut le cas pour CYSP 1. Marcel JOLLY, alors directeur de Philips-France, raconte son hésitation devant la proposition ahurissante de ce jeune artiste :" et ce fut, dit-il, comme miser sur un cheval…!" Que ce décideur intrépide soit ici remercié de son pari courageux.

 Article published in the monthly magazine ALL KNOW  September 1956  (pages 37 to 39, 5 photos and 1 portrait)
 followed by a comment from Eléonore Schöffer.
 ELECTRONICS, as we know, every day invades areas where it had seemed unlikely that she s'aventurât.  Thus, on 12 July, we announced that we had automation, so to speak, put his hand on the music.
 But yes, the Burroughs Corporation in Pasadena (California) has developed a machine which, itself, consists of songs!  Thus the "genius" refined contemporary electronic brain that is capable of producing (without breath) one thousand melodies popular at the time, by collecting encrypted messages and assembling them according to some melodic pattern.
 You say without doubt that this is a sort of world record in the field, if used, boldness mail.
 Mistake.  It is we, the French, who have the world record.  Read …
 A cylindrical base of about forty centimeters high.  On top of metal bars planted vertically.  And escaping from these bars, up to man, other rods, and metal plates.  Of all shapes, all colors.
 This is a large, a "thing" strictly indefinable in any angle you look.  This is like nothing.  At most, we can consider some combination of the semaphore, or one of those unusual objects that children sometimes build with the parts of Meccano.
 The strange building called "Cysp1.  It is a work of art.  And also a machine.  Machine considered a work of art.  In fact, we would like is a cybernetic sculpture (the first that exists in the world), which is also called spatial composition, steel and duraluminium.
 There are better.  This sculpture, in fact, is not stationary.  She turns, she danced …  Here we go: Cysp1 is a dancer.  A dancer electronics.
 If, instead of laughing, you want to reflect for a moment, you will be plagued by this alternative: either it is or it is the prodigious work of a madman particularly troubled by the electronic …
 Specifically describe the equipment.  Under the cylindrical base, mounted on casters, lies a complex mechanism and an electronic brain.  The latter, by an assembly of axes are related to metal plates that overcome the device.  Arranged in a disorder apparently total, there are eleven and five rectangular plate-shaped disc.  Different sizes, they are pivoting and polychrome: blue and yellow stripes, red stripes, white and yellow, etc …  Each of these plaques is operated by a small motor connected to the brain hidden in the base. In the recesses of the infrastructure are housed microphone and photo electric cells, which capture all the variations of color, light intensity and loudness.
 Here we touch on the essentials.  Indeed, any changes in color and intensity affect immediately the strange robot, which immediately began some movement.  The color blue, for example, or a sharp, excited Cysp1.  So the computer is running from left to right, shakes his plates in a given direction at any speed.  If, however, you propose to Cysp1 red, a more serious tone, a bright light, then it frightened, falling, swirling in on itself, shake his plate in another direction at another speed .. .  One can guess the result: when the experiment is going on night, the cast plates multicolores frantically slaps on the walls, like a kaleidoscope in madness, and the scaffolding tubes agitated furiously on rubber wheels.
 These apparently inconsistent play of light and movement is really impressive strangeness.  I did detect, for my part, no beauty Cysp1 did published a huge toy that does nothing, and think about this fabulous machine so complicated that an American manufactured one day …  and is used strictly for nothing …
 Sculpture, electronic, or both?
 What therefore this work, or brilliant burlesque to taste?
 N.  Schöffer, the inventor, himself says:
 – The show has lived figurative.  And even abstract art conventional.
 We are in a time of rupture.  We must follow the precursors and want me to break with the traditional concept of sculpture …
 Nicolas Schöffer, get it, is an artist of Hungarian origin.  He followed the course of the Ecoles des Beaux-Arts in Budapest, then Paris.
 – Whatever you say, I have been a very normal, a world that is increasingly accelerated.
 N.  Schöffer speaks with enthusiasm and conviction.  Front empty, clear eyes, you might deal with "prophet".  It takes place in any case, in the extreme avant-garde.
 It is without doubt a visionary, sprang straight, perhaps a slice of science fiction, art, fiction.
 Cysp1, he said, is a sculpture spatiodynamique. What …
 – In 1948 I discovered,  spatiodynamisme created, its aim is the integration of dynamic and constructive space work in the plastic.  Spatiodynamique sculpture was created by a first frame whose function is to contain and capture a fraction of space in determining the pace of the work.
 – And then …
 – …  The spatiodynamisme must change existing concepts of town planning.  It makes sense that the whole device is designed by the sculptor, not the architect.  The "plastic" must take precedence over the "functional" …
 – But your robot-dancer …
 – The movement, color and sound are part of the work and they work with constant variations through the mail.  Spatiodynamique sculpture is a sculpture show.  His sound is possible by extracting and using sounds of different elements of the sculpture …
 Occasional character, Schöffer believes him, the future of his immense unusual design of the sculpture.  On 9 August last evening, the Marseillais able to attend this event: Cysp1 danced on the night of Star break, with a couple of famous dancers, Michèle Seigneuret and Maurice Béjart, that does not discourage boldness.  Yet accustomed to the joke, the Marseillais were dumbfounded.  And hilarious.
 Especially since this ébouriffantes gala was held on the terrace of the Radieuse City, known to be the "house of the fada" …  Unfortunate coincidence, you will agree!
 – That man, peuchère, a spectator said in speaking of N.  Schöffer he took the sun right on the head …
 We make fun of him, the father of spatiodynamisme not a cure.
 – Van Gogh was weird, too, in his time … "He said the other day.
 NB It is the truth to say that the strict terms of mechanics and electronics, Cysp1 is a quite extraordinary find.
 Commentary Eléonore Schöffer: Any scientific or technical novelty is received with fear: the speed of 35 km / h trains first terrified, the heart would not …  But some "dare"!  As for art, any novelty laugh: the artist is a "dive".
 The "new" technical and scientific become outdated and are replaced by more efficient …  The latest artistic appreciate over time otherwise …  Impressionism …  Van Gogh to spend which are fabulous!  The art is gaining in value over time but also over time as society changes enough to become capable of understanding and love.  The artist seems "ahead" when it is simply in direct its time, whereas most of the company that is late, it agrippée is in habits and values exceeded suspicious for novelty, and lazy to mentally adapt to more complex processes.
 It is necessary for any researcher of great qualities of strength, courage, loyalty to oneself to resist sarcasm, makers get their confidence, and the feasibility of which was "unthinkable" …
 This was the case for CYSP 1. Marcel JOLLY, then head of Philips France, says his reluctance to the proposal of this amazing young artist "and it was, he said, as betting on a horse …!"  That this decision is fearless here thanked for his courageous gamble.

 CYSP 1. Le danseur cybernétique (PHIL A PHIL, juin 1956)

CYSP 1 – Le danseur cybernétique
Extrait de la revue PHIL A PHIL de juin 1956
 Au cours de la "Nuit de la Poésie", organisée le 28 mai au Théâtre Sarah-Bernhardt, un robot danseur électronique extraordinaire a été présenté par son créateur, le sculpteur Nicolas Schöffer. L'animation de cette composition abstraite avait été confiée à Philips. Cette réalisation d'un danseur animé marque le premier effort tendant à allier la sculpture abstraite et la chorégraphie. Nicolas Schöffer, qui, on s'en souvient, avait déjà conçu avec le concours de Philips un robot compositeur unique au monde avec la Tour Spatiodynamique Cybernétique et Sonore l'année dernière dans le parc de Saint-Cloud, lors de la première Exposition Internationale du Bâtiment et des Travaux Publics, a ainsi réalisé une composition métallique polychrome douée d'une totale autonomie de mouvements. Un cerveau électronique, étudié et mis au point par nos ingénieurs, lui donne la posibilité de se déplacer, de tourner sur elle-même et d'animer les seize éléments mobiles qu'elle porte, à diverses vitesses. Chacun des mouvements est déclenché par des signaux lumineux ou sonores, captés par des cellules photoélectriques et des microphones intégrés dans l'ensemble, ce qui donne à l'appareil une sensibilité quasi oganique. Le danseur cybernetique "CYSP I" se déplacera et s'animera suivant le déroulement du scénario lumineux et sonore conçu par le chorégraphe. C'est sur un accompagnement de musique concrète de Pierre Henry, que "CYSP I" a fait ses "premiers pas" dans le monde. Ultérieurement, il "dansera" dans la troupe de Maurice Béjart.

English translation (using Google translator)
CYSP 1 – The dancer cybernetics
 Extract from the journal PHIL PHIL A June 1956
   During the "Night of Poetry", held May 28 at the Théâtre Sarah Bernhardt, an electronic robot dancer extraordinaire, was introduced by its creator, the sculptor Nicolas Schöffer.  The animation of abstract composition that had been given to Philips.  This realization of a dancer animated marks the first effort to combine the abstract sculpture and choreography.  Nicolas Schöffer, which we remember, had already developed with the assistance of a robot Philips composer in the world with Tower Spatiodynamique Cybernetics and Sound last year in the Parc de Saint-Cloud, at the first International Exhibition Building and Public Works, has achieved a good polychrome metal composition of full autonomy movements.  An electronic brain, studied and developed by our engineers, gives the possibility to move, to turn on itself and lead the sixteen moving it relates to various speeds.  Each movement is triggered by light or sound signals, captured by photocells and microphone integrated into the whole, giving the device a sensitivity almost organism.  The dancer cybernetics "CYSP I" will move and will liven the course of the following scenario sound and lighting designed by the choreographer.  On accompanying music concrete of Pierre Henry, that "I CYSP" was his "first steps" in the world.  Subsequently, it "dances" in the troupe of Maurice Béjart.

CYSP-1 at the ICA (above and below). Note the Antenna on CYSP-1 and the separate radio-control unit.   See video clip here of Swedish exhibition showing the radio-control unit. (You will have to register and login to MovieTone before you can view this).

Cysp-1 on the right, with Gordon Pask's Colloquy at ICA's Cybernetic Serendipity, 1968.

Electronic Design, Vol. 14, No. 1 –    January 4, 1966

NEWS : Electronic pop-art art pops on the scene – p42

Roger Kenneth Field, News Editor

   During the past month, exhibits of electronic art have blossomed in New York with a frequency that suggests an aesthetic explosion in electronics or, at the very least, an electronic explosion in aesthetics.

   The word art is used advisedly. The creators of the works shown here do not represent these to be art in the classic sense. Not a single piece is fashioned of traditional material, nor with ordinary tools. In this new art, wire and junk iron replace marble and canvas; the welding torch and the screwdriver eliminate the -chisel and the paintbrush.

   All of the works move and most of them make funny noises. In theory, there is no reason why art objects shouldn't make noise, yet when the clatter of the other art completely drowns out the one you're trying to listen to, you quickly develop a respect for quiet museums. The creators of these contraptions may or may not be competent artists, (history must decide that), but they certainly have senses of humor.
  Marshall McLuhan, Canadian philosopher, observes that modern art is always one technology behind life. This is amply illustrated by these electronic efforts in our nuclear age. But Oscar Wilde said, "Life imitates art" and, indeed, there are pop-art people who bend every effort to look like the chap in the bottom photo on this page [not shown here].
  A more finished product was executed by Nicolas Schoffer, a Parisian visionary and city-planner, as well as artist. In his plan for a "cybernetic city," robots like his Cysp I (see photo  above) can be summoned by pocket transmitter to perform a little spectacle anywhere.

  Design shortcomings are common to the other artists as well. Schoffer's Cysp 1 has a rear swivel wheel which jams because it has no caster. ………………
  Admittedly, these efforts merely represent a start. Whether the path will really ever be run or whether electronics artists will fade, as did the fist and shoulder pianists, is hard to predict.
  Certainly these examples in no way approach the present "state-of-the art." Perhaps a flurry of artistic activity among electronics design engineers will contribute to the culture as well as the technology of future generations.

The author with Eléonore Schöffer de Lavandeya at the Schöffer Museum, Kalosca, Hungary, June 2009.

See the site dedicated  to Nicolas Schöffer here.

Plaque on wall of Schöffer's Atelier in Paris.

VIDEO CLIPS are found here  and here (see below). You will have to register and login to MovieTone before you can view the first video clip.




1951 – La Tortue Cybernetique (Cybernetic Tortoise) – Paul-Alain Amouriq (French)

In late 1951, Paul-Alain Amouriq, a Frenchman then aged 17, built a cybernetic tortoise inspired by Grey Walter's as published in a French science magazine Science et Vie (February 1951). Several years later Science et Vie became aware of Amouriq's tortue, and Pierre de Latil visited him and the subsequent article was published in the March 1954 issue.

It uses all-relay logic, no vacuum-tubes are used at all.

Photo courtesy A.-P. Amouriq 2009.

STOP PRESS – 9th Oct 09 –Wonderful news – Paul A. AMOURIQ saw this post about his "tortue" and posted the first ever comment to my new blog. Thanks Paul.

He has sent through some further information, plus a picture of what 'tortue' looks like now after some technology modifications. See new info at bottom of this post.

Note: The picture of the Tortue below is facing to the right. The single steering wheel is at the rear of the tortoise.

Photo courtesy A.-P. Amouriq 2009.

Attirée par la lumière et sachant contourner l'obstacle, la tortue de P.-A. Amouriq est le mieux agencé des robots cybernétiques.



Un animal artificiel de plus, et fabriqué par un jeune homme de dix-sept ans ?…
Simple « bricolage » d'amateur imité des précédents, sera-t-on tenté de penser.
Mais d'abord quand Paul-Alain Amouriq, alors élève de « mathelem » à Louis-le-Grand (il prépare aujourd'hui sa licence ès sciences) le construisit, c'était il y a deux ans, et nul n'avait encore donné de descendance aux fameuses « tortues » de Grey Walter.
Ensuite cet engin autonome et automatique n'a rien d'une improvisation. Bien au contraire, il est calculé ; c'est le mieux construit, le mieux agencé des diverses « tortues », le seul qui ne soit pas réalisé avec de simples pièces de « meccano ». Il faut préciser que le lycéen bénéficia du concours d'une grande firme d'appareils de mesures électriques dont son père est directeur.
Tout entière usinée en duralumin, sa machine n'est pas une simple copie améliorée des « espèces » antérieures d'animaux artificiels. Elle présente plusieurs dispositifs originaux.

Une inspiration puisée dans « Science et Vie »

C'est en lisant l'article consacré par Science et Vie aux tortues électroniques de Grey Walter que P.-A. Amouriq, comprenant tout l'intérêt de ces premières applications de la cybernétique balbutiante, voulut réaliser une nouvelle «espèce ».
Son engin aurait trois roues dont une à la fois directrice et motrice. A la différence d'Elmer et d'Elsie, premières nées de l'espèce Machina speculatrix, la roue directrice ne serait pas à l'avant, mais à l'arrière. Ainsi les virages seraient mieux « pris », l'engin risquant moins d'accrocher, par exemple, le chambranle d'une porte au-delà de laquelle il vient d'apercevoir une attirante lumière.
Deux sensibilités : un sens nuancé, la vue, et une sensibilité plus fruste, celle des chocs.
Les organes de la vue sont deux cellules photoélectriques qui balaient l'horizon.

Qu'il en existe deux et non une seule, peut donner des réactions beaucoup plus subtiles aux perceptions visuelles.
La somme des courants perçus par les deux cellules représente une appréciation de  'intensité lumineuse ; à cette fin, les cellules sont montées en « parallèle », mais leur montage « en opposition » confère aussi au robot l'appréciation de la direction de la source lumineuse.
L'influence de la cellule de droite l'emporte si celle-ci perçoit plus de lumière que la gauche ; ou inversement. Si la lumière se trouve juste entre les deux « yeux »,  les deux influences se balancent. Quant à la sensibilité aux chocs, elle se traduit par une augmentation de l'intensité dans le moteur de locomotion brusquement bloqué, puisque les roues ne peuvent plus avancer. Voilà donc la bestiole conçue, sensible à l'intensité et à la direction de la lumière ainsi qu'aux chocs contre un obstacle. Restait à décider de quelle façon elle réagirait — car une machine ne pourra jamais « connaître » que par les sens et agir que par les organes dont nous l'aurons dotée.
Paul-A. Amouriq gratifia son engin d'actes simples : avancer à plein régime ou à demi-régime, tourner, ou reculer (un seul régime).

Un comportement très avancé 

Voyons comment ces actes sont reliés aux sensations que provoquent, par leur présence et leur absence, la lumière et les obstacles. Admettons qu'il n'y ait pas de lumière. C'est un cas particulier d'une perception équilibrée des deux cellules. Le moteur de direction, lequel est naturellement sensible au déséquilibre des perceptions lumineuses, n'entre pas en jeu et la marche est rectiligne. Mais l'absence de courant dans le circuit affecté par l'intensité lumineuse détermine l'introduction d'une résistance dans le circuit des batteries alimentant le moteur de direction ; ce courant d'alimentation faiblit donc, et la marche est ralentie. En même temps, une lampe s'allume à l'avant du robot. Elle symbolise un état dé prudente investigation. D'ailleurs, si la lampe est assez puissante, elle peut par son reflet avertir de la présence d'un obstacle.

Recul devant l'éblouissement, mais sur choc, demi-tour

Admettons maintenant qu'il y a au moins une lumière. L'animal se dirige alors vers elle. Mais, dès que l'intensité lumineuse devient trop forte, il recule jusqu'à ce que l'intensité de cette lumière (ou d'une autre) soit de nouveau attirante.
Les cellules photoelectriques — du moins celles utilisées ici — ont un défaut : elles sont moins sensibles lorsqu'elles perçoivent de la lumière depuis un moment. Mais ce défaut s'est trouvé salutaire : il confère à l'engin une nuance de comportement hors programme : l'animal domine en partie sa réaction de recul et s'approche de plus en plus du danger.

En cas de choc

Que se produit-il dans le cas d'un heurt ?
L'excès de courant dans le moteur de locomotion commande immédiatement la marche arrière, ainsi que l'inversion du courant des cellules. Cela pendant cinq à six secondes — le temps de parcourir 30 à 50 cm. Puis c'est de nouveau la marche avant, mais le parcours n'est plus le même.
Si l'obstacle est heurté pendant un recul, alors intervient une désensibilisation à la lumière.
Pendant quelques instants l'engin marche en avant à la recherche de l'obscurité, et ce n'est qu'après un repos d'une dizaine de secondes, dans un état d'équilibre des deux cellules, que la marche vers la lumière reprend.


Simplicité et sensibilité

Regardons maintenant l'ensemble du mécanisme : il ne comporte aucune lampe de radio, aucun amplificateur, mais seulement des relais d'une extrême sensibilité, mis au point par le père du jeune cybernéticien. Ainsi l'engin est-il beaucoup plus solide et possède-t-il" un comportement bien plus stable que ne l'était celui de ses devanciers.
L'ensemble, fixé sur une plaque de bakélite, est facile à démonter du châssis. Nous ne ferons pas un parallèle entre ce robot et les tortues de Grey Walter. Du moins, grâce à la possession de deux « yeux » se comportet-il plus comme un animal que ne font les tortues de Grey Walter dotées d'un seul oeil tournant dans un seul sens, ce qui fait qu'elles ne peuvent tourner que dans un seul sens, contourner un obstacle que d'un seul côté. Avec deux yeux dotés d'un va-et-vient symétrique, la marche vers la lumière est plus décidée ; elle n'est pas pour cela absolument rectiligne car toujours, dans la pratique, l'influence d'une cellule l'emporte sur l'autre, ce qui détermine de très légers zig-zags correspondant exactement aux corrections continuelles par lesquelles procède la marche (et en fait tous les gestes) des êtres vivants.
Quant à l'alimentation automatique, elle n'est certes pas réalisée dans ce robot.

Mais ceux de Grey Walter ont démontré une fois pour toutes qu'un tel mécanisme était possible. Il est secondaire désormais de vouloir, au prix de complications mécaniques, le reproduire.

Pierre de Latil


Using Google language translator:


Attracted by the light and knowledge around the obstacle, the turtle P.-A. Amouriq is better organized cyber robots.



An animal more artificial, manufactured by a young man of seventeen years? …
Simple 'DIY' amateur imitation of precedents, will he be tempted to think.
But first, when Paul-Alain Amouriq, then a student of "mathelem" Louis-le-Grand (he now prepares his BSc) built on was two years ago, and no one had yet given lineage to the famous "turtle" by Walter Gray.
Then the autonomous vehicle is not automatic and an improvisation. Rather, it is calculated, it is better built, better organized various "turtle", the only one that is not done with simple pieces of "meccano". It should be noted that the student enjoyed the support of a large firm of electrical measuring instruments which his father is the director.
Completely machined duralumin, his machine is not a simple copy improved "species" of previous artificial animals. It has many original features.

Drawing inspiration from "Science and Life"

In reading the article on Science and Life by turtles electronic Grey Walter that P.-A. Amouriq, including the interest of the first applications of cybernetics in its infancy, would produce a new "species".
His machine would have three wheels with both a director and driving. Unlike Elmer and Elsie, first born of the species Machina speculatrix , the steering wheel would not be in front, but on the back. Thus the curves are better "caught" the craft less likely to hang, for example, the jamb of a door beyond which it has seen an attractive light.
Two sensitivities: a nuanced sense, sight, and sensitivity crudest, the shocks.
The organs of sight are two photocells sweeping horizon.

That there are two rather than one, can provide much more subtle reactions to visual perceptions.
The sum of the currents collected by the two cells represents an assessment of light intensity and to this end, the cells are connected in "parallel, but mounting" in opposition "also gives the robot the assessment of the direction of the source light.
The influence of cell line wins if it receives more light than the left, or vice versa. If the light is just between the two "eyes", the two influences are balanced. As for sensitivity to shock, it results in an increased intensity in the locomotive engine suddenly stopped, because the wheels can not move anymore. So that the creature designed, sensitive to the intensity and direction of light as well as a barrier against shock. It remained to decide how she would react – because a machine can never "know" only through the senses and act as the bodies which we have endowed.
Paul-A. Amouriq bestowed his gear acts of simple forward at full or half-system, turn, or back (one system).

Conduct advanced

Let's see how these acts are linked to sensations that provoke, by their presence and absence, light and obstacles. Let there be no light. It is a special case of a balanced perception of the two cells. The engine management, which is naturally sensitive to the imbalance of light perception, is not at stake and walk a straight line. But the absence of current in the circuit affected by light intensity determines the introduction of resistance in the circuit of the batteries supplied to the engine management; the supply current weakens, then, and walking is slow. At the same time, a lamp lit in front of the robot. It symbolizes a state of cautious investigation. Moreover, if the lamp is powerful enough, she can tell by his reflection in the presence of an obstacle.

Decline to glare, but on shock, turn

Suppose now that there is at least one light. The animal then heads towards it. But when the light intensity becomes too strong, it recedes until the intensity of the light (or another) is again appealing.
Photoelectric cells – at least those used here – have a flaw: they are less sensitive when they receive light for a while. But this defect has been salutary; it gives the vehicle a shade of behaviour outside the program: the animal dominates in part of its response comes back and more danger.


What happens in the case of a clash?
The excess current in the motor control of locomotion immediately reversing, and reversing the flow of cells. That for five to six seconds – time to walk 30 to 50 cm. Then again it forward, but the term is no longer the same.
If the obstacle is hit during a fall, then comes a desensitization to light.
For a few moments the craft forward march in search of darkness, and only after a rest of about ten seconds in a steady state of two cells, as walking towards the light resumed.


Simplicity and sensitivity

Now look at the whole system: it contains no radio tube, no amplifier, but only relays extreme sensitivity, developed by the young father of Cybernetics. Thus the gear he is much stronger and has he "behaviour much more stable than was that of his predecessors.
The complex, set on a bakelite plate is easy to disassemble chassis. We will not make a parallel between this robot and the turtles Walter Gray. At least, thanks to the possession of two "eyes" are comparable to more like an animal than for turtles Grey Walter's with a single eye turning in one direction, thus they can only rotate in one direction, around an obstacle on one side. With both eyes with a back-and-forth symmetrical walking towards the light is decided, it is not absolutely straight because it always, in practice, the influence of a cell outweighs the other, which determines very slight zig-zag match exactly with continual adjustments by which conducts walking (and indeed all the actions) of living beings.
As for the ADF, it is certainly not done in this robot.

But those of Grey Walter demonstrated once and for all that such a mechanism was possible. It is now secondary to want at the price of mechanical complications, reproduce.

Pierre de Latil


Photo taken at a zoo in Paris. Image courtesy A.-P. Amouriq 2009.

STOP PRESS – 9th Oct 09

Wonderful news – Paul A. AMOURIQ saw this post about his "la tortue" and posted the first ever comment to my new blog. Thanks Paul.

He has sent through some further information, plus a picture of what "la tortue" looks like now, after some technology modifications.

"Hello Reuben,
I will try to send you a not too old video clip of the tortue. Many years ago it has been equipted with a shell, the huge condensers and the batteries have been replaced by smaller ones and the chassis could be shortened. But it spent many years in a cellar and I had to repair it, change the selenium photocells (fortunately I could find the manufacturer, then retired, who still was having a couple of cells in a drawer and who has been kind enough to give them to me)  try to make the old relays working again. The 3 sensitive (black) relays are galvanometers with one contact on the pointer and 2 adjustable platinum contacts, one on each side.
I had seen the Elmer and Elsie of Grey Walter in 1949 in an article of the Science et Vie and that gave me the idea to try and make one. In fact I made about 4 models with Meccano pieces before making the one you know with the help of an engineer who machined the metal parts according to my drawings and instructions.
I met Albert Ducrocq and his partner in an exibition. Their renard was very slow and I never saw it really working but just moving a few centimeters.
With my best regards.
As IOTA is today…..

See all the Early Cybernetic Animals here.

1951-54 – Miso, Barbara, Cesare, Felapton, Job – Albert Ducrocq (French)

The Ducrocq family of cybernetic animals were named “Miso”
These were designated M-1 through  to M-5.  Some articles refer to “le renard” (French for  fox) as “Job” (M-5).  M-1 in most cases was referred to as Miso.  It probably became M-1 when M-2 was built.
So far, I have seen pictures of 6 different Miso’s. M-1, the round electro-static model, M2-4  are 3 tortoises – Barbara, Cesare, and Felapton. Where does the 6th one come from if there are only 5? The cover of "L'ERE DES ROBOTS" (1953) has , I believe, the first version of  Job (le renard – french for fox )  and is referred to as M-5 and looks quite different to the final version of Job (unless, of course, Job was yet to come and would have been M-6?) . Most recent pictures are of the "evolved" M-5 fox.

Biography: from Wiki

Scientifique, journaliste et écrivain français, Albert Ducrocq (9 juillet 1921 à Versailles – 22 octobre 2001) est fils d'Armand Ducrocq, Colonel d'infanterie coloniale et de Germaine (née Adam). Il se marie le 31 juillet 1954 avec Mlle Lucie Roullet avec laquelle il aura 3 enfants: Christine, Chantal et Jean-Claude.

Il fait ses études secondaires à Versailles d'abord au Collège Saint-Jean-de-Béthune puis à l'école Sainte-Geneviève. Il entame ensuite des études supérieures à la Faculté des sciences et des lettres de Paris et à l'Ecole libre de sciences Politiques.

Il fut l'un des pionniers de la cybernétique.

Albert Ducrocq est toutefois beaucoup plus connu en tant que journaliste et écrivain scientifique, dont les talents de vulgarisateur et la passion des récits ont été unanimement reconnus et ont inspiré de nombreuses générations de futurs professionnels comme de passionnés d'astronautique.

Sa propre passion pour ce domaine fit de lui un témoin privilégié des grands évènements de la conquête spatiale. Il s'est notamment rendu en URSS à la fin des années 1950 et a commenté en direct les premiers pas de l'homme sur la Lune pour les auditeurs de la radio Europe 1 en 1969.

Outre ses nombreux ouvrages, il écrivit énormément d'articles, publiés dans les magazines Espace & Civilisation, Atomes, Sciences et Avenir et Air et cosmos, ainsi que dans les pages scientifiques du quotidien Le Figaro.

Google translation

Scientist, journalist and writer French, Albert Ducrocq (July 9, 1921 in Versailles – October 22, 2001) is the son of Armand Ducrocq, Colonel Infantry colonial and Germaine (nee Adam). He married July 31, 1954 with Miss Lucie Roullet with whom he had 3 children: Christine, Chantal and Jean-Claude.

He attended high school in Versailles first at College Saint-Jean-de-Bethune then École Sainte-Genevieve. He began graduate studies at the Faculty of Science and Letters in Paris and the Ecole Libre de Sciences Politiques.

He was a pioneer of cybernetics.

Albert Ducrocq is much more experienced as a journalist and science writer, whose talent for popularizing science and passion narratives were universally recognized and have inspired many generations of future professionals as passionate Astronautics.

Her own passion for this field made him a privileged witness of the great events of the conquest of space. He particularly made in the USSR in the late 1950s and commented live the first steps of man on the moon for listeners of the radio station Europe 1 in 1969.

Besides his numerous works he wrote a lot of articles published in magazines Area & Civilization, Atoms, and Future Science and Air & Cosmos, and in the science pages of the daily Le Figaro.


Ducrocq also built other models, including a calliope (poems and pictures), and a type of model remote-controlled automobile. He also invented a stylus keyboard hookd up to a powered typewriter.

M-1 – Miso

In “Thinking by Machine” by de Latil, on p. 237 he says “ Much the same plan (refering to Grey Walter’s tortoise) is found in “Miso”, the electronic animal created at Versailles in 1952 by Albert Ducrocq using Meccano parts. Instead of being sensitive to light, it is affected by the electric charge of the objects that it approaches. It abhors these objects, even if one of them is in the hands of its maker; thus it is called “Miso”, but it present no great difficulties to transform it into a “Philo.”
It helps to know your Latin when it comes to Ducrocq’s names for his cybernetic zoo.  "Miso," signifying hatred of something (hence repulstion), the opposite is  "Philo," lover of something (hence attraction).

Miso uses its shell as a capacitive-dome, probably tuned so it is activated (repelled in this case) as ones body get within close proximity to the domed shell without necessarily touching it.

The enlargement of the image and a rough  translation of an article gives more of the story. Here goes:-

Miso I fut doté d'un sens « capacitif » , le principe étant celui du détecteur de mines :
lorsqu'une plaque métallique est reliée à la  grille d'un tube oscillateur, le débit de celui ci  se trouve modifié à l'approche de la main  aussi bien que d'un corps quelconque, sous la  seule condition qu'il ne s'agisse pas d'un isolant électrique parfait. Et avec la variation liés de débit ainsi enregistré il est facile de commander un relais, de tels montages capacitifs ayant d'ailleurs été utilisés dans nombre  d'applications pratiques.
D'autre part, nous avons donné à ce Miso I une symétrie circulaire parfaite. L'appareil était porté par quatre roues, disposées respectivement selon les sommets d'un triangle équilatéral et le centre de celui ci : ces quatre roues étaient directrices maintenues parallèles par un système de chaînes, tandis que la roue centrale était motrice, Miso possédant un moteur de marche et un moteur  d'exploration à l'instar des tortues de Grey Walter, mais avec la faculté de pivoter sur place avant de partir dans une direction déterminée. En pratique, l'organe sensoriel fut concrétisé par un ensemble de douze papilles périphériques, chacune représentant une
plaque capacitive et le branchement étant tel que lorsque l'animal avançait dans une certaine direction, :étaient « interrogées » les 5 ou 6 papilles se trouvant dans la partie avant. Dans ces conditions, lorsque l'animal « sentait » à distance un obstacle devant lui, il s'arrêtait net et pivotait jusqu'à trouver une nouvelle direction exempte de tout obstacle; cette perception des obstacles à distance et cette rotation pour les éviter étaient assez spectaculaires pour l'observateur non initié.
Dans les réalisations suivantes, nous avons doté les Miso d'organes sensoriels supplémentaires, notamment avec des papilles tactiles, des contacts électriques étant fermés lorsque l'animal venait à toucher un obstacle isolant qu'il n'avait pu flairer à distance. Ensuite, nous avons expérimenté un palpeur de relief destiné à empêcher l'animal de s'engager dans une pente trop forte: la roue centrale était solidaire d'un tâteur qui oscillait entre deux contacts de garde. Ceux ci étaient alors excités lorsque l'appareil s'approchait d'une pente trop forte.
Mais l'élément qui nous apparut le plus intéressant fut bien l'introduction d'un véritable « organe de décision» par lequel pouvait être évoqué un embryon de personnalité. Alors que les tortues se dirigeaient automatiquement vers une faible lumière, tandis qu'au contact d'un obstacle leur moteur d'exploration était automatiquement mis en action dans un sens déterminé, nous avons monté un inverseur sur le moteur d'exploration des Miso, de telle sorte que, rencontrant un obstacle, l'animal puisse tourner à droite ou à gauche, ce choix étant fonction des « souvenirs» de l'animal et pouvant être effectué selon des formules variables. Une des plus intéressantes nous apparut être celle de l'enregistrement des rotations; un disque métallique était déplacé à droite ou à gauche par les rotations de l'animal, de sorte qu'il « sommait» en quelque sorte ces rotations. Ce disque était solidaire d'un contact commandant l'inverseur.
Dans ces conditions, nous avons pu faire en sorte que l'animal « n'aime pas » les rotations. Si, devant un premier obstacle, il a par hasard tourné à droite, il tournera à gauche devant l'obstacle suivant, car la rotation à droite représente pour lui un mauvais souvenir. Et devant un troisième obstacle il choisira le sens auquel est associé sur le disque la moindre rotation. Par exemple, s'il a tourné la première fois de 500 à droite et la seconde fois de 300 à gauche, on peut être sûr qu'il choisira la gauche.
Puis nous avons compliqué la formule en incorporant le principe d'une « habitude » faisant en sorte que lorsqu'une rotation est amorcée elle fasse tourner le disque d'un certain angle representant une sorte de prise en charge. Si sa valeur est de 10 degrés. Il en résulte que trois rotations à droite de 15, 20, et 15 degrés équilibreront plus que largement une seule rotation à gauche de 60 degrés.

Uncorrected translation from Google – good enough to understand how it works.

Miso I was with a sense "capacitive" The principle is that of mine detector:
Where a metal plate is connected to the grid oscillator tube, the flow of this one is modified with the approach of the hand as well as any of a body, under the sole condition that it does act not a perfect electrical insulator. And the variation associated with debit and registered it is easy to order a relay capacitance such schemes have also been used in many practical applications.
On the other hand, we gave this Miso I circular symmetry perfect. The chassis was brought by four wheels, arranged respectively, based on the vertices of an equilateral triangle in the center of this one: these four-wheel steering were kept parallel with a system of channels, while the central wheel was driving with a Miso engine running and an engine crawling like turtles Grey Walter, but with the ability to rotate on the spot before you go in a particular direction. In practice, the sensory organ was solidified by a set of twelve buds devices, each representing one Capacitive plate and the turnout was as if the animal was moving in a certain direction: "interviewed were" 5 or 6 buds located in the front. Under these circumstances, when the animal "remotely sensed" an obstacle in front of him, he stopped and pivoted net until it finds a new direction free from any obstacle, and this perception of distance and obstacles to this rotation were to avoid them quite spectacular for the uninitiated observer.
In the following achievements, we have the Miso additional sensory organs, including touch with papillae, electrical contacts are closed when the animal comes into contact with an insulating barrier that it was unable to sniff out at a distance. Then we experienced a feeler relief designed to prevent the animal from engaging in a slope too strong: Central wheel was attached to a tâteur which ranged between two contacts custody. The latter were excited when the chassis approached from a slope too strong.
But the element that appeared most interesting property was the introduction of a real "decision-making body" which could be referred to an embryo personality. While the turtles were moving automatically to low light, while in contact with a barrier engine exploration was automatically put into action in a specific way, we have an inverter mounted on the engine of exploration of Miso, so that, encountering an obstacle, the animal can turn right or left, depending on the choice "souvenirs" of the animal and can be carried out according to formulas variables. One of the most interesting we appeared to be that of the registration of rotations, a metal disc was moved to the right or left by the rotation of the animal, so that "sommait" somehow these rotations. This disc was attached to a contact Commander reverser.
Under these conditions, we were able to ensure that the animal "dislikes" rotations. If, before the first hurdle, he accidentally turned right, it turns left in front of the obstacle on because the rotation is right for him a bad memory. And before a third obstacle it will choose the meaning that has to disk any rotation. For example, if it turned the first time in 500 right and the second time from 300 to the left, you can be sure he will choose the left.
Then we complicated formula incorporating the principle of a "usual" making sure that when a rotation is primed to do it the hard turn a certain angle representing a kind of care. If the value is 10 degrees. As a result, three rotations to the right of 15, 20 and 15 degrees balance more broadly than one rotation left by 60 degrees.

M-2 to M-4 – Barbara, Cesare, and Felapton.

I have not been able to find any real detail about these three models, in one occurance referred to as 'petit renard' (little fox).

My observation of the photographs suggest a design similar to Grey Walter's M. speculatrix models. They are tricycle based, front wheel steering and drive, twin – not singular photo-electric cells, open-frame shells as collision detectors.

Fortunately I've been able to locate a video clip of these three, and it shows a little of their behaviour, but not enough to draw firm conclusions.  (Gaumont link here . You need to register to preview the clips).






M-5 Job – Le electronique renard – The electronic fox.

Early version.

Later version



 Cette adoption d'une mémoire devait nous amener à passer du réflexe à l'acte cérébral proprement dit. Nous avons en l'occurrence dégagé le caractère automatique du réflexe tel qu'on le trouvait dans le chien de Piraux aussi bien que dans les tortues de Grey
 Walter, la perception commandant automatiquement une action, de même que dans le réflexe humain on sait que la perception ne va pas jusqu'au cerveau: dans la moelle épinière se trouve bien en effet une synthèse du présent et du passé, son comportement étant fonction de ce qu'il voit et de ce qu'il a vu. Ainsi nous est il apparu que l'on reproduirait un modèle élémentaire de véritable cerveau artificiel si l'on faisait en sorte qu'à chaque instant la décision se présente comme une résultante complexe des impressions senso rielles du présent et des souvenirs emmagasinés dans une mémoire, et c'est ce problème que nous avons tenté de résoudre avec le renard électronique.

 L'anatomie motrice de celui ci est classique. Trois roues le supportent selon le modèle du tricycle, la roue avant étant directrice et motrice, tandis que des « compte tours » sont associés à l'une des roues arrière. Et la roue avant se trouve au dessous du cou de l'animal, celui ci portant à l'extrémité d'un support isolant un ensemble d'organes constituant la tête du renard. La tête en question a un champ d'exploration de 180°, exigeant évidemment que le moteur d'exploration soit doté d'un inverseur de marche. Celui ci intervient auto matiquement lorsque la tête se trouve à bout de course, complètement tournée à droite ou à gauche, ou encore lorsque, l'animal étant en période d'exploration, un obstacle latéral vient s'opposer au mouvement de sa tête.
Quant au moteur de marche monté sur la roue avant, nous l'avons choisi assez puissant en raison tant du poids assez élevé du renard (4 kg) que de l'intérêt d'obtenir un appareil n'ayant pas un déplacement trop lent afin que l'observation n'en soit pas fastidieuse. La capacité des accumulateurs est modeste (8 volts; 6 AH), mais heureusement ce moteur de marche ne travaille que de façon discontinue: lors de l'exploration, la consommation totale du renard est de l'ordre de 1 ampère seulement, et elle est encore moindre en période de « réflexion ».

 En l'occurrence, l'organe fondamental décidant des mouvements du renard est un « inverseur de régime » qui dirige le courant des accumulateurs vers le moteur de marche ou bien l'envoie dans un circuit où le moteur d'exploration est monté en série avec un autre moteur, dit « caractériel », dont nous allons incessamment expliquer le rôle. Un tel inverseur de régime est évidemment commandé par un relais inséré à la sortie des postes électroniques qui constituent le cerveau du renard.

  Celui ci est alimenté par les circuits en provenance des organes sensoriels, selon une « conjugaison » aussi vaste que possible des impressions recueillies. Certes, elle ne peut être totale. Supposons que le renard avance dans une direction déterminée et que
 brusquement un obstacle soit interposé sur son chemin: obligatoirement il doit s'arrêter.
Autrement dit, il faut que le sens tactile ait « priorité » sur les autres. Telle fut la formule adoptée dans toutes les réalisations antérieures. Au contraire,pour les impressions sensorielles et auditives, il est mécaniquement possible à l'animal de marcher aussi bien que d'explorer. Autrement dit, si l'on considère les cinq sens que possède le renard, la conjugaison ne peut porter que sur trois d'entre eux, le sens tactile devant faire l'objet d'un circuit complètement autonome, tandis que pour le flair nous avons adopté une formule intermédiaire.
Une telle situation n'est pas dépourvue d'intérêt : la conjugaison des impressions en provenance de trois sens représente en effet une opération complexe reproduisant le jugement. Par example, admettons que le renard voie une lumière et sort alors dans un état tel qu'un courant de 0,51 milliampère circulé dans son relais. Admettant que ce relais ait été fermé et qu'il s'ouvre pour un courant de 0,50 milliampère, il restera fermé. L'animal aura « décidé » de marcher, mais de justesse: un son peu intense sera en effet en mesure de faire tomber momentanément le courant plaque au dessous de 0,50 milliampère, et le relais restera ensuite ouvert, car pour le « fermer » un courant de 1 milliampère est nécessaire. Les « zones critiques'» de son comportement se situent ainsi autour de 0,50 et de 1 mA,  les amplificateurs ayant été réglés de telle manière que ces zones puissent correspondre à des « cas » facilement réalisés en pratique. Par ailleurs, indépendamment de cette notion de jugement, on peut dire que le sens tactile assure le réflexe, c'est à dire que, comme chez les organismes supérieurs, le comportement du renard dépend tant du réflexe que d'actes cérébraux.
En pratique, les cinq sens furent réalisés de la manière suivante :
1. La vue est assurée au moyen de deux cellules photo électriques munies d'oeillères. Grâce à cet effet directionnel, la sensation n'est pas la même avec une lumière quatre fois plus intense située à une distance deux fois moindre, comme ce serait le cas avec une seule cellule. Autrement dit, on peut avancer que ce dispositif donne dans une certaine mesure au renard la perception du relief.
2. L'ouïe consiste en un microphone; il s'agit d'un modèle rudimentaire, mais sensible, avec une pastille à grenaille utilisant le courant des accumulateurs et alimentant un transformateur couplé à un amplificateur électronique.
3. Un sens de l'orientation est représenté par un potentiomètre logé dans le cou de l'animal. Celui ci commande la polarisation d'une certaine lampe L', alors que la vue et l'ouïe commandent la lampe L, le relais sensible principal étant inséré dans le circuit plaque commun de L et L'. On voit que ce montage réalise bien une conjugaison des trois types d'impressions sensorielles jusqu'ici considérées.
4. Le toucher est assuré grâce à des papilles tactiles logées dans la tête de l'animal: il s'agit de contacts qui se ferment dès qu'un corps extérieur touche cette tête. Les contacts en question sont insérés dans un circuit contrôlant directement l'inverseur de régime.
5. Le flair consiste en une plaque métallique qui forme le museau du renard, le principe étant celui des papilles capacitives évoquées à propos de Miso. Le capaciteur qu'elles excitent commande un relais spécial qui peut agir sur l'inverseur de régime à l'instar des papilles de contact, mais ce relais est également relié au « poste caractériel ».

Cependant, sous le schéma précédent nous n'avons pas encore vu apparaître la mémoire intégrative, élément numéro 1 de l'acte cérébral.
Précisons bien quelle différence fondamentale existe entre la mémoire intégrative et la mémoire simple, communément appelée enregistrement. Cette dernière formule correspond à la consignation d'une suite de signaux sur un support quelconque, suite dont on obtiendra ultérieurement la restitution par ce simple défilement dont nous trouvons l'illustration aussi bien avec le fil magnétique qu'avec le classique disque de phonographe. Au contraire, la mémoire intégrative représente une véritable synthèse des souvenirs: on peut, en l'occurrence, l'imaginer sous les espèces d'une surface initialement plane, à laquelle les différents événements viennent apporter autant de petites déformations. Ainsi tous les événements dont l'homme est le témoin depuis sa naissance le marquent ils, sa mentalité pouvant être concrétisée par l'aspect de sa surface mnémique  à la suite de toutes ses déformations, dont chacune a été oubliée dans le détail.
C'est ainsi avec le caractériel que nous avons tenté de reproduire un tel principe de mémoire intégrative. Il s'agit, nous l'avons dit, d'un moteur d'exploration, donc susceptible d'être mis en marche chaque fois que les impressions sensorielles du renard atteignent le seuil d'excitation qui fait basculer l'inverseur de régime. Ce moteur est en l'occurrence couplé à un potentiomètre qui commande la tension de la grille auxilliaire du tube L'. Si cette tension est très élevée, le courant passe dans L', même si la grille principale est polarisée négativement. Au contraire, une faible tension de cette grille auxiliaire a pour effet de bloquer L'.
Grâce à ce mécanisme, il apparaît donc que les impressions sensorielles   en même temps qu'elles commandent le mouvement du renard   modifient le réglage de ses amplificateurs, c'est à dire que, mis devant une situation identique, son comportement ne sera pas le même d'un jour à l'autre, puisque le renard aura «vécu » entre temps.
Toutefois, il nous a paru judicieux que ce caractériel ne soit pas mis en marche en permanence. A cet effet, nous l'avons fait dépendre d'un poste de commande capable de le court circuiter. Celui ci fait lui même la synthèse de plusieurs phénomènes, puisqu'il dépend de trois contacteurs commandés respectivement par le mouvement du caractériel lui même (ce qui revient à dire que, de lui même, le caractériel se bloque au bout d'un temps de fonctionnement déterminé), par le mouvement du renard (un inverseur étant commandé par les roues arrière) et enfin par le relais du capaciteur.
Lorsque le caractériel est en action, la sensibilité du renard se trouve modifiée et on peut dire que son caractère varie. Au contraire, quand il est court circuité, le caractère est fixe, ou du moins ne peut plus évoquer que des « variations d'humeur », selon la tension aux bornes des accumulateurs. Cette tension, qui commande directement la polarisation de la lampe L', est en effet fonction tant de l'état de décharge des accumulateurs que de l'énergie demandée par les moteurs et bobinages divers.
Si la décision prise par le renard devant une situation donnée représente ainsi une synthèse du présent et du passé, il est à noter que le « poids » de ce passé est variable selon la position de la tête. Nous avons en effet indiqué que le mouvement de celle ci agit sur un potentiomètre commandant la lampe L', la sensibilité de ce tube étant ainsi très grande quand la tête est droite, et au contraire faible si la tête est complètement tournée à droite ou à gauche. De même, il apparaît que, selon les individus, le poids du passé est plus ou moins grand selon leur tempérament  tous les degrés étant possibles de l'hédoniste au contemplatif   tandis que, pour un individu donné, la part du passé varie également selon les circonstances.
Ainsi, lorsque le renard regarde droit devant lui, peut on dire qu'il vit essentiellement sur sa mémoire, tandis qu'il tient surtout compte de ses perceptions quand sa tête est tournée.
Signalons simplement, sans discuter ici cette question, que nous avons voulu introduire une cellule d'imagination dans ce renard, tandis qu'il parle un langage binaire, grâce à deux ampoules respectivement verte et rouge portées par sa tête.
Mais surtout, nous avons tenté de reproduire une analogie supplémentaire avec le cerveau humain en adoptant le principe d'une perception discontinue, cette discontinuité étant d'une importance capitale chez nous, En l'occurrence, notre cerveau peut être considéré comme une machine travaillant en vase clos, sauf durant de courts intervalles qui se répètent au rythme de 10 à 12 par seconde, au cours desquels des informations sont précisément cueillies dans nos aires cérébrales. Au demeurant, ce rythme nous explique bien que notre oeil voit les images si elles se succèdent à raison de quelquesunes par seconde, tandis qu'au dessus d'une douzaine c'est le « cinéma »; de même notre oreille perçoit un son si les bruits successifs obéissent à une loi analogue. En réalité, ce n'est ni notre oeil ni notre oreille qui doivent en être rendus responsables, mais bien le cerveau, celui ci prenant connaissance du monde de façon discontinue pour modifier son travail en fonction des nouvelles informations recueillies.
Pour réaliser une telle discontinuité dans le renard, nous avons fait appel à ces « comptetours » solidaires d'une roue arrière, dont il a précédemment été question. Ainsi, un contacteur primaire se trouve fermé tous les trois tours, qui bloque un relais mémoire susceptible d'être débloqué seulement si une cause influe sur le mouvement de la tête. D'autre part, un contacteur secondaire est fermé tous les six tours. Or, la fermeture de ces deux contacteurs a pour effet de mettre en marche le moteur d'exploration et le caractériel, tandis que toutes les perceptions sont coupées, cet état de choses subsistant jusqu'à ce que l'un des deux contacteurs soit ouvert. Cela se passera en pratique si la tête rencontre un obstacle latéral ou, à défaut, en fin de course, c'est à dire lorsque la tête, complètement tournée d'un côté, est amenée à changer son sens d'exploration. A ce moment, le renard voit alors le monde extérieur avec un esprit nouveau, puisque nous avons signalé que c'est justement en fin de course que le poids du passé est minimum…
Si ce renard prétend reproduire les caractéristiques fondamentales du travail cérébral, comprenons toutefois qu'il s'agît d'un « modèle réduit » élémentaire, tant au stade de la perception qu'à celui du jugement : ses deux cellules photo électriques apparaissent en effet comme des accessoires bien pauvres en regard des 140 millions de cellules que porte notre rétine. Et d'autre part, il est acquis que notre cerveau possède quelque 10 milliards de neurones!
A ce titre, il est certain que nous avons à peine entrevu des possibilités qui s'annoncent fantastiques. Et d'ailleurs, par le passé, nombre de constructeurs d'automates nous ont montré toute la subtilité de comportement que l'on peut attendre d'une machine si l'on a la patience de l'aménager en conséquence. Le nom prestigieux de Vaucanson est là, avec ses automates merveilleux : si l'on considère seulement une « aile » du fameux canard, n'oublions pas qu'elle comportait 400 éléments, tandis que le même Vaucanson sut construire pour la représentation du « Cléopâtre » de Marmontel un serpent qui s'élançait à travers la scène en sifflant et allait avec une étonnante précision percer le sein de la reine. Et les constructeurs d'automates ignoraient cet agent merveilleux qu'est l'électricité, âme des organes sensoriels et des moteurs actuels! On peut se demander quelles machines ils auraient réalisées avec les ressources de l'électronique moderne.
Justement, la technique nous fait aujourd'hui pénétrer dans cette ère de la véritable « horlogerie électronique » où l'on peut construire des tubes de la taille d'un pois, avant d'avoir demain des transistors gros comme une aiguille de phonographe. Dans la montre électrique, ne voyons nous pas d'autre part un moteur électrique et une pile offrant 1 aspect de simples pastilles ? Sous ce signe, on peut espérer demain construire des cerveaux électroniques de la dimension d'un cerveau humain, c'est à dire que de véritables miracles sont à attendre en matière d'animaux électroniques, au delà desquels notre bricolage actuel apparaîtra d'une pauvreté déconcertante.
Quant à l'intérêt de tels animaux artificiels, il nous semble considérable. D'abord leur utilité théorique est réelle, véritables machines à analogies nous permettant les plus intéressantes études sur le fonctionnement de notre système nerveux. Surtout, nous croyons qu'inéluctablement, à côté des machines à calculer et des cerveaux électroniques sans cesse plus complexes sur lesquels l'homme se repose de plus en plus pour résoudre un nombre croissant d'opérations intellectuelles, la terre se peuplera demain d'un grand nombre de robots dotés de facultés motrices: prolongeant la formule de ces animaux artificiels, ils représenteront ainsi un peuple d'esclaves aptes' à exécuter toutes tâches matérielles dont l'homme entendra les charger, sous les espèces des
 races les plus diverses…


Google translation (uncorrected)


  The adoption of a memory should lead us to spend reflex in the brain act itself. We have in this case reached the automatic reflex as it is found in the dog Piraux as well as turtles Grey
  Walter, the perception Commander automatically action, as well as in the human reflex we know that the perception does not go to the brain: in the spinal cord itself is in fact a summary of the present and the past, its behavior depending what he sees and what he has seen. Thus it is apparent that we reproduce a model elementary artificial brain true if one was sure that at any moment the decision is a result of complex sensory impressions of this cutting and memories stored in a memory , and it is this problem that we tried to address with the fox-mail.

  The anatomy of the motor is classic. Three-wheeled support it based on the model of tricycle, the front wheel is director and
  Driving while "taking turns" are associated with one of the rear wheels. And the front wheel is below the neck of the animal, the latter bearing at the end of an insulating support a set of bodies constituting the head of the fox. The head in question has a field of exploration of 180, demanding course that the engine is crawling with an inverter walk. The order is automatic when the head is at the end, completely turned to the right or left, or when the animal is in a period of exploration, an obstacle comes oppose the lateral movement of his head.
As for the running engine mounted on the front wheel, we have chosen powerful enough because of both the relatively high weight of the fox (4 kg) than in the interest of obtaining a device with no moving too slow to that the observation is not tedious. The capacity of batteries is modest (8 volts; 6 AH), but luckily this engine running works only so discontinuous: when drilling, the total consumption of the fox is in the order of only 1 amp, and it even fewer in times of "reflection".

  In this case, the basic body movements deciding fox is a "reverser system" that directs the flow of battery to the motor running or sends in a circuit where the engine is mounted exploration in series with another engine, said "character", which we will shortly explain the role. Such an inverter system is obviously controlled by a relay inserted at the exit of the posts that make up the electronic brain of the fox.

   This one is fed by the circuits from the sensory organs, according to a "combination" as broad as possible impressions gathered. Admittedly, it may not be complete. Suppose that the fox advance in a certain direction and that
  Suddenly be an obstacle placed in his path: he must necessarily stop.
This means that the tactile sense is "priority" over others. That was the formula adopted in all the past achievements. On the contrary, for the hearing and sensory impressions, it is mechanically possible for the animal to walk as well as to explore. In other words, if we consider the five senses that owns the fox, the combination may only refer to three of them, the tactile sense to be a completely autonomous circuit, while the flair we have adopted an intermediate.
Such a situation is not devoid of interest: the combination of impressions from three senses is indeed a complex reproducing judgment. For example, assume that the fox track and a light comes up in a state such as a current 0.51 milliamp circulated in the relay. Accepting that this relay has been closed and it opens to a current of 0.50 milliamp, it will remain closed. The animal has "decided" to walk, but only just a little intense it will indeed be able to bring down the current plate momentarily below 0.50 milliamp, and the relay will then remain open, because for the "close "a current of 1 milliamp is necessary. The "critical areas' of his behaviour and lie around 0.50 and 1 mA, amplifiers have been resolved in such a way that these areas may correspond to" case "easily achieved in practice. In addition, regardless of the concept of judgement, we can say that the tactile sense ensures reflex, ie, as in higher organisms, the behaviour of both the fox depends reflex that acts brain.
In practice, the five senses were made in the following manner:
1. The view is provided through two photo electric cells fitted with blinkers. Through this way, the sensation is not the same with a light four times more intense, at a distance twice less, as would be the case with a single cell. In other words, it can be argued that this gives to some extent the fox the perception of the terrain.
2. Hearing consists of a microphone, it is a rudimentary model, but sensitive, with a pellet shot at using the current Battery and feeding a transformer coupled to an electronic amplifier.
3. A sense of direction is represented by a potentiometer housed in the neck of the animal. He then brought to the polarization of a certain lamp L ', while the sight and hearing are ordering the lamp L, the main one being sensitive relay inserted in the circuit plate Joint L and L'. We see that this assembly performs well a combination of three types of sensory impressions so far considered.
4. The touch is ensured by the papillae tactile housed in the head, the animal it is that close contacts as soon as a body outside touch this head. The contacts in question were inserted into a circuit directly controlling the inverter system.
5. The flair is a metal plate which forms the nose of the fox, the principle being that the papillae capacitive raised about Miso. The Capacitor they excite a relay special command that may act on the reverser system like the taste of contact, but this relay is also linked to the "post character." [Note RH – This is the so-called “sense of smell” – not real smelling at all.]

However, under the previous scheme we have not yet seen the memory integrative, element number 1 of the Act cerebral.
Note well what fundamental difference between memory and integrated memory simple, commonly known recording. This formula corresponds to the recording of a sequence of signals on any media, as a result of which there will subsequently recover from this simple scroll which we find illustrated both with the wire with the conventional magnetic disk phonograph. Instead, the memory is a true integrative synthesis of memories: one can, in this case, imagine under the appearances of a surface initially plane, in which the various events just make as many small deformation. Thus all the events in which man has witnessed since its birth as they mark his mentality can be achieved by the appearance of its surface mnémique as a result of all its strains, each of which has been forgotten in detail.
Thus with the character that we tried to reproduce such a principle integrative memory. It is, as we have said, with an engine of exploration, and so is likely to be turned on whenever the sensory impressions of fox reach the threshold of excitement that toppled the regime reverser. This engine is in this case coupled with a knob that controls the voltage of the grid auxiliary tube '. If this tension is very high, the current passes through L ', even though the main gate is biased negatively. Instead, a low voltage of the auxiliary gate has the effect of blocking L '.
Through this mechanism, it appears that the sensory impressions at the same time they control the movement of foxes change the setting of its amplifiers, ie, faced a similar situation, his behaviour is not the same from one day to another, since the fox has "lived" in the meantime.
However, we felt it appropriate that this character is not turned on at all times. To this end, we did it depend on a command post capable of short-circuiting. He makes himself the synthesis of several phenomena, it depends on three contacts controlled by the movement of the character itself (which means that, in itself, the character hangs at the end of a time Operating determined), by the movement of fox (an inverter is controlled by the rear wheels), with the relay of Inductor.
When the character is action, the sensitivity of the fox is changed, and we can say that it is varied. On the contrary, when it is short-circuited, the character is fixed, or at least can no longer mention that "variations in mood," according to the voltage of the batteries. This tension, which directly controls the polarization of light ', is indeed a function of the state of discharge of batteries that the energy required by the engines and various windings.
If the decision by the fox to a given situation represents a synthesis of the present and the past, it should be noted that the "weight" of the past is variable depending on the position of the head. We have in fact indicated that the movement thereof acts on a potentiometer commander lamp L ', the sensitivity of the tube being so great when the head is right, and on the contrary low if the head is completely turned to the right or left. Similarly, it appears that, depending on the individual, the burden of the past is more or less depending on their temperament all levels with the possibility of hedonistic while the contemplative, for a given individual, the part of the past also varies depending on the circumstances.
So when the fox look straight ahead, can we say he lives primarily on his memory, especially as he takes on his perceptions when his head is turned.
Worth noting simply, without discussing this issue here, we wanted to introduce a cell of imagination in this fox, as he speaks for binary through two bulbs green and red respectively worn by her head.
But above all, we tried to reproduce a further analogy with the human brain by adopting the principle of a perception discontinuous, this discontinuity is of a paramount importance to us, In this case, our brain can be considered as a working machine in a vacuum, except during short intervals which are repeated at a rate of 10 to 12 per second, during which information is collected specifically in our cerebral areas. Moreover, this rate though we explained our eye sees the images if they succeed because of Brettermeier per second, while over a dozen is the cinema, and similarly our ear perceives sound if noises successive obey a similar law. In fact, it is neither our eye or our ears that need to be blamed, but rather the brain, the latter taking cognizance of the world in order to change discontinue its work in the light of new information received.
To achieve such a discontinuity in the fox, we have called these comptetours "solidarity" with a rear wheel, which he had previously discussed. Thus, a contactor primary is closed all three rounds, which blocks a relay memory likely to be released only if a cause affects the movement of the head. On the other hand, a contactor school is closed all six rounds. However, the closure of these two contacts has the effect of bringing
Engine exploration and character, while everyone's perceptions are cut, this state of affairs remaining until one of the two contacts is open. This happens in practice if the head hits an obstacle side or, at the end of the course, ie when the head turned completely on the one hand, is required to change its sense of exploration. At that moment, the fox sees the outside world with a new spirit, as we pointed out that it is precisely at the end of the race that the weight of the past is minimal …
If the fox claims reproduce the basic characteristics of cerebral work, understand that it is a "model" Basic reduced, both at the perception that the trial: two photo electric cells appear in effect Accessories well as poor against the 140 million cell door as our retina. And on the other hand, it is assumed that our brain has about 10 billion neurons!
As such, there is no doubt that we have barely glimpsed the fantastic opportunities that lie ahead. And indeed, in the past, many manufacturers have shown us automates all the subtlety of behaviour that may be expected from a machine if you have the patience to develop it accordingly. The prestigious name of Vaucanson is there, with its wonderful machines: if we consider only a "wing" of the famous duck, we must not forget that it incorporated elements 400, while the same Vaucanson knew how to build representation " Cleopatra "Marmontel a snake that s'élançait across the stage whistling and went with astonishing precision drill with the queen. And manufacturers automata unaware that agent wonderful electricity soul of sensory organs and today's engines! One might ask what machines they would have done with the resources of modern electronics.
In fact, the technique we now enter an era of genuine "electronic watches" where one can build tubes the size of a pea, before tomorrow transistors big as a phonograph needle. In the electric shows, we can see no other an electric motor and a battery offering 1 single aspect of pellets? Under this sign, it is hoped to build tomorrow's electronic brain the size of a human brain, ie true miracles are to be expected in terms of electronic animals, beyond which our current DIY appear in a Poverty disconcerting.
As to the desirability of such animals artificial, it seems considerable. First theoretical usefulness is real, real machines analogies allowing us the most interesting studies on the functioning of our nervous system. Importantly, we believe qu'inéluctablement, besides calculating machines and electronic brains ever more complex over which man relies more and more to solve a growing number of operations intellectual grounding peuplera tomorrow ' a large number of robots that are able drive: extending the wording of these artificial animals, they represent a people capable of slaves' to perform all tasks material which man will hear the charge, under the species of
  The most diverse races …

There are a few video clips of Ducrocq's constructions.  I will add them in as I relocate them.


As it is today….  (image from Arts et Metiers site here)

In May 2009, David Buckley and I visited the Arts et Metiers archive to see Job.  Together we took many detailed photographs of Job.  Here are a couple – note that they are for academic and research purposes only, NOT commercial.


Ducrocq also constructed a remote control vehicle. All I have are a few stills from a video clip (see Gaumont here and register to view clip).

CHALLENGE: someone to write down an English – version of what's being said in the various video clips.

TRIVIA: Albert Ducrocq's naming convention behind his Miso family members is worth a mention.

It helps to know your Latin when it comes to Ducrocq’s names for his cybernetic zoo.  "Miso," signifying hatred of something (hence repulsion), the opposite is  "Philo," lover of something (hence attraction).

Those names intrigued me. Whilst searching internet for them, more often than not I was getting hits, but they were not the 'renards'. What it appears to be is that Ducrocq, the scientist, used a remembering technique for mnemonics of a syllogism.

syllogism, a form of logical argument that derives a conclusion from two propositions (‘premises’) sharing a common term, usually in this form: all x and y (major premise); z is x (minor premise); therefore z is y (conclusion). For example: all poets are alcoholics; Jane is a poet; therefore Jane is an alcoholic. In this deductive logic, the conclusion is of course reliable only if both premises are true.
An example is: all horses have tails; all things with tails are four-legged; so all horses are four-legged. Each premise has one term in common with the conclusion, and one term in common with the other premise. The term that does not occur in the conclusion is called the middle term. The major premise of the syllogism is the premise containing the predicate of the conclusion (the major term), and the minor premise contains its subject (the minor term). So the first premise of the example is the minor premise, the second the major premise, and ‘having a tail’ is the middle term. The four kinds of proposition distinguished in syllogistic reasoning are universal affirmatives (all men are mortal), called A propositions, particular affirmatives (some men are sick), called I propositions, universal negatives (no men are trustworthy), called E propositions, and particular negatives (some men are not lawyers), called O propositions. This enables syllogisms to be classified according to the form of the premises and the conclusions (see also square of opposition). The other classification is by figure, or way in which the middle term is placed in the premises. The conclusion is always of subject-predicate (S-P) form, and the middle term is M. The four figures are illustrated in the diagram:

The example given was a syllogism of the first figure. Mnemonics, in the form of names with the vowels indicating the A, E, I, O, forms, help students to remember the valid forms, called moods of the syllogism. Valid syllogisms of the first figure are Barbara (AAA), Celarent (EAE), Darii (AII), and Ferio (EIO); of the second, Cesare, Camestres, Festino, and Baroco; of the third, Darapti, Disamis, Datisi, Felapton, Bocardo, and Ferison; and of the fourth, Bramantip, Camenes, Dimaris, Fesapo, and Fresison.
The words Felapton, Cesare, and Barbara are some of the mnemonic names invented in the thirteenth century, and found in the “Summulæ” of Petrus Hispanus (Pope John XXI., died 1277).

Job was a God-fearing man who avoided evil, had seven sons and three daughters, and was immensely wealthy. God calls Job "A good man who fears God and will have nothing to do with evil." (Job 1;8). Satan scoffs, "Why shouldn't he when You pay him so well? … You have always protected him and his home and his property from all harm." God then allows Satan to do anything he likes with Job's wealth, but not to harm him physically.

A series of misfortunes strikes Job. Three friends visit him, Eliphaz, Bildad, and Zophar, and each try to explain Job's misery in a different way. There are three speeches by each of the three friends.

A fourth man Elihu, tries to summarize the situation, offering yet another explanation of why Job is suffering. Finally the Lord Himself speaks to Job, and Job recognizes that we do not always need answers to life's problems but that we always need God Himself. Job is then healed and given material and spiritual blessings far beyond his former state.

The life and times of Job are contained in the Bible's book of Job, in the Old Testament. The theme of this book is that mankind simply does not have enough knowledge to explain why things happen the way they do. It is possible to rise above our limitations by faith in God, however, because God does know why everything happens and will work good for those who love him. We may thus learn the profound truth that when we have nothing left but God, God is enough.
I suspect Ducrocq is having a small joke on us as he sees himself as the “creator”.

See other early Cybernetic Creatures and Models here.

M. speculatrix – a new species of animal – ELMER

ELMER – (ELectro-MEchanical Robot)  
How the media reported the coming of ELMER :
Lethbridge Herald –  Wednesday , February 25, 1948
Robot Tortoise Likes Women –
Recognizes Voices, Comes To Meet When Called-Can be Sulky                                          
LONDON. Feb. 25      Daily Express reported today that Dr. W. Grey Walter. 38-year-old brain scientist has built a robot tortoise so "human that it likes company, recognizes voices and comes to heel when called. The paper said that the tortoise avoids cold or damp weather, great heat or bright lights, likes women but dislikes men.   "It can be temperamental and will be neurotic and sulky for days if teased or given too many contradictory instructions," the Express added.  Dr. Walter, at the Burden Neurological Institute at Bristol, built the tortoise with ordinary radio tubes, switch relays, miniature microphones -for registering sound and photoelectric cells for recognizing color and shape.
Lethbridge Herald – Thursday , February 26, 1948  
Has Not Yet Made "Robot Tortoise"
BRISTOL, England, Feb. 25 Dr. W. Grey "Walter, 38-year-old director of the Burden Neurological Institute here, said Wednesday that it "should be possible" to build a "robot tortoise" which would react to light and sound, but he has not yet made one.  "The most I can say is that theoretically such a thing should be possible and that I am planning to make one if I have the time," he added.  Earlier a London newspaper had reported that the brain scientist had built a robot tortoise so human that it liked company, recognized voices and avoided cold or damp weather, great heat or bright lights.
Kingsport News –(AP)  – Thursday, May 27, 1948  
Inventor Ready To Build His Robot Tortoise
Bristol, England — AP
A robot tortoise with a "mind" has reached past the blueprint stage at Burden Neurological Institute. Conceived by Dr. W. Gray Walter, director of the institute's physiological department, the tortoise is designed to react just like the real thing. He said the tortoise probably would be very large at first "when I get the time to build it." He chose this particular creature because of its "convenient shape. It's size may be reduced when it becomes possible to make microscopic valves, microphones and photo-electric  cells to control it." When completed he said he would "challenge anyone to tell whether or not it is living, without prolonged observation."  Dr. Walter pictured something like this happening at the institute in the not too distant future: "As you stand by the fire a robot tortoise lumbers along and nestles cosily by your leg. You exclaim in astonishment. The tortoise sheers off nervously and takes refuge under the sofa, but a low whistle brings it back again. It will even seem to possess all manner of lovable qualities conspicuously missing in other robots." The only trouble is, he said, "I am not sure yet how it will react to publicity."
ELMERAt ELMER's rear you can see the two different coloured plugs used for charging the batteries.   The later automatic re-charging appeared for only a short period with ELSIE. The photo below is a discovery of mine, being the only picture known to date showing ELMER's internals. The front is to the left and you can clearly see the clockwork mechanism so often talked about. The Photo-electric cell (PEC) holder can be seen, but the PEC itself has been removed, which is has to be to remove the shell.  What is interesting is the type of front wheel. It appears single-sided, and pneumatic like the rear-types we generally see for his younger sister ELSIE. In the later time-lapse photos that we will see of ELMER, his trace is a lot more jerky and less smooth than ELSIE.  In his book 'The Living Brain', Grey suggests to other builders of the model that "the front tyre should be of rubber, but  thin and fairly hard, so that it can turn easily", apparantly after the lessons learnt from ELMER. This photo is even more significant, in that the CORA circuit can be seen under construction in the foreground, but more on that find when I discuss CORA in a later article.ELMER InternalsGrey Walter showing ELMER's internals

Tags: , , , , , , , , ,