Posts Tagged ‘Cybernetic tortoise’

1959 – Sverdlovsk Cybernetic Tortoise – (Soviet)

English text translated from the original German: (for pictures and diagrams, see pdf below)

The Cybernetic Model "Tortoise"
Cybernetics – In recent years, a new science was born. It enables machines to replace with highly skilled human labor, eg by electronic calculators. These machines are very complicated in structure, and only specialists with high qualifications to deal with them properly.
To the study of cybernetics are very well cybernetic models with information stores, which the animal brain can exert partial analog functions. One such model is the "turtle" developed by the Institute of Automation and robot of the Academy of Sciences of the USSR. Publication of its construction in the magazines "knowledge is power" and "Radio" No. 3/1958 encouraged the study groups for robot and automatic Young engineer at the stations in Sverdlovsk region at this, even to make such a model.
Figure 11
View of the model
The present article is roughly the construction of such a "turtle" described, it is very easy as standardized components can be used.
The main task of this model is to help the students of the upper classes while the basics of automation and cybernetics studieren.1
The behavior of the "turtle"
Observed the movements of the "turtle" obstacles creates the impression that they possess animal-related reflections. Reacts to light you on audio signals and also bumping into.. Though primitive, but it has an organ of sight, hearing a , a sense of touch and memory (memory with a conditioned reflex can be briefly formed).
Here is the proof of their sensitivity to light., The "turtle" moves in a circle on their base until they discovered the source of light is the light beam detected, it moves straight to the lamp to the visual system consists of a photoresistor This photo resistor switched on.. light on the relay d 1 the control magnet (Part VII) from, so that the move can "turtle" straight. Here comes the "turtle" an obstacle, they returned a short run to move again after a little sideways rotation forward. This process is repeated as many times until a way is found to get around the obstacle.
Audio signals to the "turtle" reacts in the following way: If a whistle is given, it will stop for about a second.
The interesting thing about the "turtle" but their "memory", which is the formation of a conditioned reflex of importance. A conditioned reflex occurs whenever different, but at least two stimuli are combined. For the "turtle" the combination of sound and shock stimuli was chosen. Exceeds the "turtle" an obstacle and at the same moment you will hear a whistle, the result is a conditioned reflex. Now "suspects" the "turtle" at every whistle a
1 The "Turtle" is a principled solution for a cybernetic model that responds to three stimuli and can emerge a "conditioned reflex". There are of course also other variants, you can work with transistors that use other relays and also make the program more extensive. However, this model is to encourage the work of communities of our country to deal with such problems and also to develop new technical solutions in creative work.
Obstacle and executes the corresponding movements to bypass the obstruction. After a certain time (this time is determined by the corresponding timer) goes out of the conditioned reflex again, if not both stimuli occur simultaneously again.
Cybernetic models have generally fulfill an experimental feature. With them it is possible to simulate individual processes of the nervous activity of the living organism. Analogies are derived from the behavior of living organisms and machines for the development of automatic information processing systems is of utmost importance. This makes it possible logical actions performed by the person on the basis of information to transmit cybernetic machines or mechanisms. This has great significance for the growth of labor productivity. The introduction of automatic regulation and control in the production always leads to a significant acceleration of production and to increase the quality. Automated systems and aggregates react precisely, not tired and are less sluggish than man.
The circuit of the "turtle"
In the overall structure and the "turtle" there were the following problems to solve:
1 Recording the information (light, sound, shock). Forward to a computing element and storing the information in the formation of the conditioned reflex.
2 Realization of the output information by movement of the drive and control mechanisms. To achieve these objects both electronic and electro-mechanical units are required.
The schematic diagram (Fig. 12) shows the circuitry recording, processing and transformation of information into control operations. For a better overview, the individual units were included only in the block.
Part I
As a photo sensor resistor is used. It is also a photocell or a photo element to use, but then an electronic amplifier is required. The potentiometer 1M ohms lin is used to control the sensitivity of the photoresistor. The sensitivity
11 part
As a simple two-pole contact feeler is used. By the contact of the circuit of the left coil of the relay d 2 is closed when pushed. This is triggered by relay d 4 and d 5, the backward and sideways movement. The timer IV (Z 1) finished the operation after a short time.
Figure 13
The photoresistor circuit for Part I
24V Figure 14
Circuit of the touch probe for Part II
Figure 12 a schematic diagram for the technical operation of the turtle
Part III
As a probe microphone (single crystal microphone) is used. A two-stage amplifier where the incoming audio signal is enhanced in that a rectifier bridge in the left coil of the relay 3 d, a corresponding current flows. It is recommended that the sound frequency of the amplifier set so that only signals of a particular frequency will be processed in order to avoid interference from external noise.
Figure 12b with this circuit for the relay d 1 and d 4 maneuverability at around obstacles can be increased
is set so that the photo-resistor is not responding to diffuse light. For this reason, the use of a simple lens (Fig. 18) is very convenient.

Figure 15 circuit of the microphone amplifier for Part III (the tubes correspond about our EF 14)
When switching the relay relay d 3 d 6 is turned on and brought the turtle briefly to a halt. The duration of this operation is controlled by the second timing element (Z 2).
Part IV
The two timing elements Z 1 and Z 2 have a memory function. The incoming signal triggers an operation and will be for a short time (the duration is determined by the combination of C 2, R 6 set) is stored. No signal, the circuit for both windings of the relay d 2 and d 3, and C 2 is interrupted current. If a signal that flows in the left-hand winding of the relay power d 2 or d 3, and switched by the relay. Here, C 2 invites to over R 6 and the glow lamp ignites. Thus, the circuit of the right coil of the relay is closed briefly and the process ends. The circuit is therefore only briefly closed because it is unloaded immediately after switching the capacitor C through R 1 second For this circuit polarized relays are provided with zero position. However, it can be used with two windings, simple relays, however, the circuit has to be changed.
Figure 16
Circuit of the timers (Z 1, Z 2) of Part IV
Part V
The timer Z 3 is required to form the "conditioned reflex." If simultaneously on II and III, a signal, then the relay d 4 and d 6 set the grid of the tube for a short time to ground and discharging the capacitor C 10 . makes the anode current and the relay d 7 increases attracts. According to charging of C 10 drops in the tube again, the anode current., the time for charging of C 10 corresponds to the duration of the "conditioned reflex" (for the present model were about two minutes selected).
Figure 17
Circuit for the timer Z 3 in Part V
Part VI
As a drive motor an electric motor is used 24 V with the field winding. Ports 1 and 2 are for the field winding and are used to change the direction of rotation by the relay d 5 reversed. Via the terminals 3 and 4, the armature of the motor is fed.
By Relais d 6 is the exchange Contact 6b in a sound, the power supply is interrupted to the collector and the model stopped for a short time. The speed should be about 5 to 10 cm / s. With appropriate variation of the circuit can be used also a Permamotor.
Part VII
This part constitutes an electromagnet by means of which the circular motion of "tortoise" is controlled. Smaller no light on the photoconductor, then the circuit of the electromagnet is closed. This
Figure 18 look for the photo resistor
Figure 18a The turtle Elsie
On the shell of the turtle a candle (1) had been secured, a second candle (2) was placed at some distance. Between the candle and the turtle was a barrier (3). The shutter of the camera was opened and the turtle was left to itself. Your path is recorded in the photo. (4) starting position of the turtle (it starts moving toward the light source). (5) collision with the obstacle. (6), bypassing the restoration of the obstacle and movement direction of the light source. (7) The turtle happened to approach very close to the candle, the light was quite strong, the turtle was forced to retreat, they bypassed the candle. (From: IA Poletayev: Cybernetics German VEB Verlag der Wissenschaften, Berlin 1962, page 233.)
Figure 19 Base plate with drive and control
is given to the steering wheel, a rash of 20 °. In light relay drops d 1, and the steering wheel gets a straight-ahead position.
The mechanical structure
The "turtle" has an oval shape and the drive control is initially in the size of 220 mm X 290 mm. Built on the base plate. Assembly of electronic equipment should be done only when the drive and control function properly.
The chassis is composed of three rubber wheels, the diameter should be about 50 to 60 mm.
The Figure 19 shows the basic mechanical structure of the drive and the controller. For driving a double worm reducer was chosen because it allows the use of small gears. The arrangement of the worm gears and is shown in Figures 20 and 21.
Figure 20 Cross-section A A
Figure 21 section B B
7 [28004]
At the intended speed of 50 to 100 mm / s and the given wheel diameter, the rotational speed of the drive shaft does not exceed 20 to 30 U / min. In the example used with 32 and 24 teeth for a motor with 6000 to 8000 r / min and two common worm gears. If other wheels or a different motor is used, the reduction must be recalculated.
Greater friction loss can be avoided if only one wheel is rigidly connected to the drive shaft.
Figure 22 Cross-section C C
The principle of the magnetic control is seen in Figure 19 and 22. The steering wheel is located in a fork, in which a lever is attached. On this lever is effected by the solenoid, the spring, or a control stop. The stop control should be about 20 ° when the electromagnet. The steering wheel by the coil spring is held in the normal position.
Freely edited by a methodical instructions of the station Young Engineers in Sverdlovsk, published in 1959.

 See pdf of referenced chapter here

Sverdlovsk, name of the city of Yekaterinburg, Russia, from 1924 to 1991
Sverdlovsk, Ukraine, a town in Ukraine.

I suspect this Tortoise is from the Russian Sverdlovsk, not the Ukraine.


Tags: , , , , , , , , , ,

1966 – Kybernetisches Demonstrationsmodell Schildkröte – Otto von Guericke University (German)

Kybernetisches Demonstrationsmodell Schildkröte
1966 Otto-von-Guericke-Universität Magdeburg

Als Ergebnis einer fast 2jährigen Arbeit der AG "Regeltechnik" im Haus der Pioniere kann ein kybernetisches Demonstrationsmodell vorgestellt. werden – die Schildkröte. Das Modell wurde bereits mehrfach ausgezeichnet. Hier Dipl.-Ing. Walther und Christine Poethke (Wilhelm-Weitling-Schule) bei der Überpfüfung der Lenkanlage der Schilkröte. (UA)
Die "Eingeweide" der Schildkröte. Sie hat 2 Fotozellen als "Augen", 2 Mikrophone als "Ohren", 2 Motoren zum Antrieb und einen Motor zur Lenkung. (UA)
——–Google Translation————
As a result of almost 2 years of work of the AG "Control systems" in the House of Pioneers, a cybernetic model presented demonstration. be – the turtle. The model has already won several awards. Here Ing. Walther and Christine Poethke (Wilhelm-Weitling-school) in the steering mechanism of Überpfüfung Schilkröte. (UA)
The "guts" of the turtle. She has 2 photo cells as "eyes", 2 microphones as "ears", 2 motors to drive and a motor for steering. (UA)

Original article sourced from here.


Tags: , , , , , ,

1950 – “Tinius” the Cybernetic Turtle – Rice University (America)

Tinius the Cybernetic Turtle c1950 – An engineering student takes a robot through its paces, 1950.  [RH-2013- Although looking like a turtle (tortoise) which suggests being a Grey Walter-inspired machines, With it two "eyes" appearing as though it is fixed to the steering, suggests more that it is just phototropic i.e. it is attracted to and will follow a light source as per Norbert Wiener's Moth.]

In 1920, the 1st Rice Engineering Show draws 10,000 spectators from across the city of Houston (Texas) to Rice's campus. Student exhibits include a "bucking bronco," magnetic stunts, nitroglycerin explosions, X-ray demonstrations and a radio-controlled car. The shows continue to draw huge crowds every other year through 1940. An Exposition of Science and Art held in 1950, 1954 and 1956 expands the audience but is phased out after 1956.

Article sourced from here.


1970 – Cybernetic Tortoise Model – (Russian)

See full pdf article from the Russian magazine Radio September 1970 here.

Tags: , , , , , ,

1958 – “Tortilla” Cybernetic Tortoise – (Ukraine)

Fig. 38. Schematic of the charge, voltage conversion, the element changes tropism and chain contact device "turtle" "Tortilla".

Fig. 39. Schematic of extreme search direction of the "turtle" "Tortilla".

Fig. 40. Schematic of reaction "turtle" "Tortilla" with the whistle.

Information and images courtesy Waldemar Dekański from Poland (January 2010).

Hello Reuben!
I'm sending you Tortilla materials just received from Ukraine. It's part of a book by A. Yvahnenko "Technical Cybernetics". According to data the project and construction of the turtle was done by three engineers from Automatics Laboratory of Electrotechnical Institute in Kiev: T. Kravec, Y. Krementulo i E. Shukaylo. I presume it was built in 1958, the book describing the turtle was published in 1959. In the same year article was issued by J.Krementulo in "Automatika" magazine. I'm during intensive search for that article.
Cheers, Waldemar.
Кибернетическая черепаха. Рассмотрим еще пример программной системы, где самоизменение программы подчиняется не одному, а нескольким требованиям. Таким примером может быть «черепаха» Вальтера [9], [59], [50]. «Черепаха» представляет собой автоматическую игрушку,
воспроизводящую все основные черты поведения живой черепахи. Конструктивно она выполнена в виде небольшой тележки на трех колесах, на которой установлены два сервомотора (ход вперед и поворот), электромагнитные
реле, электронная аппаратура и питающий аккумулятор.
Если аккумулятор хорошо заряжен, то «черепаха»
ведет себя как сытая и ищет темный угол в комнате. Если
аккумулятор разряжен, то «черепаха» ищет кормушку.
Такой «кормушкой» служит место для зарядки аккумулятора, освещенное сильной электрической лампой.«Черепаха» ищет свет и, подойдя к месту зарядки, стоит там пока не зарядится аккумуляторы. Затем снова уходит в более темное место комнаты.
Первые «черепахи» Вальтера (под названием «Элси» и «Элмер») реагировали на источник света только в зависимости от состояния своего «желудка» (аккумулятора).
В следующей разработке («черепаха» «Кора») автор осуществил еще добавочную реакцию на свист. При свисте «черепаха» замирает, т. е. некоторое время не движется. Если свист повторяется весьма часто, то «черепаха» перестает на него реагировать и продолжает либо искать «кормушку», либо уходит от нее.
Если «черепаха» наталкивается на препятствия, то программа ее действий изменяется (элемент самоизменения программы). Она делает ход назад, поворот, а затем только продолжает поиск «кормущки».
Правила действий (алгоритм) «черепахи» можно записать в виде табл. 5.
В табл. 5 сигналы расположены по силе их действия. Сигнал от контактного датчика имеет преимущество перед сигналом фотоэлемента, а сигнал от микрофона действует сильнее всех других сигналов.
Из таблицы следует, что главными программами являются: программа N9 1, обеспечивающая поиск источника света, и программа М 2, обеспечивающая более быстрое движение «черепахи» по направлению к источнику света или от него. Каждая из этих программ может иметь ряд вариантов (количество ходов и величина их не оговаривались выше). Из вариантов программы тот лучше, при котором :
а) «черепаха» быстрее находит наиболее яркий источник света;
6) найдя источник, возможно быстрее движется к немо.- (или от него).
Важно также, чтобы «черепаха» наиболее точно выполняла требования, указанные в таблице, и не теряла источника света из своего поля зрения, т. е. чтобы, перейдя к программе No 2, не возвращалась снова где-либо в пути к программе М. 1. Таким образом, «черепаха» имеет несколько показателей качества программы, кроме того, ее движение еще подчинено ряду дополнительных требований (ограничений).
Ниже мы рассмотрим более подробно схемы управления «черепахи», удовлетворяющие этим требованиям.
После «черепах» английского инж. Вальтера автоматические «черепахи» разрабатывали австрийский инж. Земанах, немецкий инж. Эйхер и др.
В СССР различные конструкции «черепах» разрабатывались в Институте автоматики и телемеханики АН СССР (инж. А. М. Петровский и Р. Б. Васильев), в Московском инженерно-физическом институте, в Институте автоматики Грузинской ССР и др. «Черепаха» «Тортилла», описываемая ниже, разработана в лаборатории автоматического регулирования Института электротехники АН УССР. Экспериментальная часть выполнена инженерами Т. Д. Кравцем, Ю. В. Крементуло и Е. И. Шукайло.
С точки зрения техники экстремального регулирование основная программа «черепахи» может быть решена двумя различными способами :
1) при помощи системы колебательного экстремального поиска наиболее яркого места горизонта, осуществляемого одним фотоэлементом («черепаха» «Тортилла-1 ») ;
2) при помощи неколебательной обратной связи, осуществляемой двумя фотоэлементами, направленными под
небольшим углом в деве соседние точки горизонта («черепаха» «Тортилла-2»).
В последнем случае мы располагаем всеми точками экстремальной характеристики одновременно и потому можно осуществить систему неколебательного установления экстремума (подробнее см. выше) .
Колебательная система благодаря наличию фильтра более помехоустойчива. Неколебательная система проще и надежнее.
Для краткости дадим описание только «черепахи» «Тортилла-1» (с колебательным поиском)1.
На рис. 38 изображена схема экстремального регулирования направления движения «черепахи» «Тортилла-1». В ней применена система шагового экстремального регулирования, рассмотренная в предыдущей главе.
Система экстремального поиска «черепахи» «Тортилла-1» действует следующим образом. Напряжение, вырабатываемое фотоэлементом ЦГ-4, усиливается при помощи электронного усилителя и поступает затем на контактные устройства шагового распределителя ШР, имеющего четыре поля. Цикл работы системы весьма прост. На первом контакте второго поля шаговый распределитель производит стирание предыдущей записи с первого электронного запоминающего устройства 3У1, а вторым контактом первого поля производится на нем новая (первая) запись напряжения. Третий контакт второго поля осуществляет стирание записи со второго запоминающего устройства 3У2, а третий контакт четвертого поля включает напряжение на сервомотор СМ1, который поворачивает фотоэлемент на шаг 7,5°. После этого четвертым контактом первого поля производится вторая запись усиленного напряжения фотоэлемента на 3У2, а пятым контактом третьего поля – сравнение напряжений первой и второй записи. Элемент логического действия ЭЛД включает сервомотор СМ1 в направлении, обеспечивающем движение (вращение) фотоэлемента к направлению экстремальной (наибольшей или наименьшей) освещенности. затем цикл операций повторяется сначала.
одиннадцатый и двенадцатый контакты четвертого поля (рис. 39) используются для: а) включения напряжения на
1 «Черепаха» «Тортилла-2» описана Ю. В. Крементуло в журнале «Автоматика», Х2 2, 1959.
сер вомотор СМ2 продольного перемещения «черепахи»; б) замыкания на короткое время цепи реле перемены тропизма 1; в) перехода от программы \5 3 к программе \5 1 или 2 в случае, если «черепаха» встретила препятствие (см. табл. 5); г) для подачи импульсов на схему реакции «черепахи» на звук (рис. 40). Измерительным элементом системы служит мост М с двумя стабиловольтами СГ-ЗС см. рис. 38,. При определенном напряжении (выбираемом Рис. 40. Схема реакции «черепахи» «Тортилла» на свисток. произвольно путем установки тех или иных сопротивлении моста) напряжение на выходе моста изменяет знак, что и приводит к переключению поляризованного реле перемены тропизма РП.
Поляризованные реле РП2 и РПз образуют элемент логического действия ЭЛД по схеме равнозначности.
зарядка аккумулятора производится через контактную шину КШ и релерегулятор РР. Напряжение постоянного тока аккумулятора при помощи вибропреобразователя ВП преобразуется в высокое напряжение переменного тока. Последнее выпрямляется и используется для питания
Под переменой тропизма «черепахи» понимается переход от поиска света к поиску темноты и наоборот, в зависимости от напряжения аккумулятора.
9 441 129
анодов 3У и усилителя фототоков. Датчик препятствий ДП при встрече с «черепахой» какого-либо препятствия срабатывает и при помощи реле РП,4 изменяет программу хода вперед на программу хода назад. В этом случае «черепаха» делает один шаг назад (на одиннадцатом контакте) и некоторое время двигается по направлению, перпендикулярному с направлением на источник света. Это достигается включением вместо основного вспомогательного
Рис. 41. Общий вид «черепахи» «Тортилла-2» .
фотоэлемента, направленного перпендикулярно оси «черепахи». Режим обхода препятствий кратковременный : как только подвижный контакт шагового распределителя дойдет снова до 12-ой ламели, то, как видно из схемы (рис. 39), основная программа «черепахи» восстанавливается.
Частота импульсов определяет собой скорость действий «черепахи». Скорость передвижения «черепахи» оказывается достаточной, если полный оборот распределителя происходит за б сек. В качестве генераторов импульсов можно использовать контактное устройтво, вращаемое отдельным двигателем.
Рассмотрим теперь действие цепи, осуществляющей реакцию «черепахи» на свисток (рис. 40). В качестве микрофона М использована пьезоэлектрическая телефонная трубка. Схема резонансного усилителя подобна схеме акустического управления радиоприемником, описанной в журнале
«Радио», М 4 за 1957 г. Реле Р1 на выходе схемы срабатывает под действием звука (свисток с частотой около
9000 гц) и останавливает оба сервомотора СМ1 и СМ2 «черепахи» (рис. 39).
Время остановки «черепахи» определяется параметрами нагрузки (1? и С) детектора. Если свистки повторяются редко, то конденсатор С успевает разряжаться, реле Р1 отпускает контакт и «черепаха» начинает снова двигаться. Если же свистки следуют часто, то напряжение на обмотке реле Р1 подымается выше некоторого предела, срабатывает реле Р2, шунтирует контакт реле Р1 и «черепаха» перестает реагировать на свистки. Блокировка реле Р2 снимается основным распределителем при прохождении через 12-ый контакт, если конденсатор к этому времени достаточно разрядится.
График типичного пути «черепахи» «Тортилла-1» к источнику света представляет собой ломаную линию. Общий вид «черепахи» «Тортилла» представлен на рис. 41.
Данные элементов «черепахи» «Тортилла» приведены па рис. 38-40.
Шаг поворота фотоэлемента составляет величину от 7,5 до 60° при частоте импульсов от 0,5 до 3 импульсов/сек. «Черепаха» реагирует на источник света (лампа накаливания мощностью 25 вт) на расстоянии до 3 м.
Некоторые дополнительные технические данные «черепахи» «Тортилла-1»
РП – поляризованное реле типа РП;
СМ – двигатели па 24 или вит. 27 в;
ШИ – шаговый искатель;
Тр – трансформатор, имеющий:
= 2 х 60 вит; д1 = 0,6 мм;
W2 = W3 = 3000 вит; д23 = 0,12 мм; В1В2 – выпрямители, собранные на ДГ-Ц24;
Б – аккумулятор типа 5 НКН-10: Напряжение тахогенератора 6 в.

English Translation

Cybernetic tortoise. Consider another example of a software system, where self-transformation program obeys no one, but several requirements. An example might be "tortoise" Walter [9], [59], [50]. "Turtle" is an automatic toy
reproducing all the main features of the behavior of living turtles. Structurally, it has been implemented in the form of a small truck on three wheels, in which there are two servo-motor (move forward and turn), electromagnetic
relays, electronic equipment and power supply battery.
If the battery is well charged, the "turtle"
behaves as a well-fed and looking for a dark corner in the room. If
the battery is discharged, the "turtle" is looking for a manger.
Such a "trough" is a place to charge the battery, illuminated by a strong electric light. "Turtle" is looking for the light and going to a place charging stands there until you charge the batteries. Then again takes place in a dark room.
The first "turtle" Walter (called "Elsie" and "Elmer") reacted to the light source only depending on the state of his "stomach" (battery).
In the next development ( "turtle" "bark"), the author conducted more additional responses to the whistle. When whistling of "turtle" freezes, ie, some time not moving. If the whistle is repeated very often, the "turtle" ceases to react to it and continues to seek a "feeder" or away from it.
If the "turtle" is impeded, the program changed its course of action (element of self-transformation program). She makes a move back, turn, and then just continues to search for "kormuschki.
Terms of action (algorithm) "turtle" can be written in the form of tables. 5.
Table. 5 signals are located on the strength of their actions. The signal from the contact sensor has an advantage over the photocell signal and the signal from the microphone effect is stronger than all the other signals.
The table shows that the main programs are: Program N9 1, provides a search of the light source, and the program of M 2, which provides a more rapid movement of "turtle" in the direction of the light source or away from him. Each of these programs may have a number of options (number of moves and not subject to value them above). Of the options program that is better, in which:
a) "turtle" quickly finds the most brilliant source of light;
6) finding the source as quickly as possible moves to dumb .- (or him).
It is also important to "turtle" most closely meet the requirements listed in the table and not lose the light source from its field of view, ie that by going to the program No 2, did not return again, somewhere in the path of the program M. 1. Thus, the "turtle" has a quality program, in addition, its movement is still subject to a number of additional requirements (constraints).
Below we consider the more detailed management scheme "turtle", satisfying those requirements.
After the "turtle" the British engineer. Walter automatic "turtle" develop an Austrian engineer. Zeman, a German engineer. Eyher etc.
In the USSR, various constructions of "turtles" were developed at the Institute of Automation and robot USSR (Ing. A. Petrovsky, R. B. Vasiliev), at the Moscow Engineering Physics Institute, the Institute of Automation of the Georgian SSR, etc. "Turtle" Tortilla ", described below, was developed in the laboratory of automatic control of the Institute of Electrical Akad. The experimental part is made by engineers TD Kravtsov, V. Krementulo and EI Shukaylo.
From the standpoint of extreme technology management core program of "turtle" can be solved in two different ways:
1) with the help of vibrational find the most extreme places of the bright horizon of single photocell ( "turtle" "Tortilla-1");
2) using nonoscillatory feedback undertaken by the two photocells directed at
slight angle to the horizon Maiden neighbor ( "turtle" "Tortilla-2").
In the latter case, we have all the points of extreme characteristics simultaneously, and therefore can be carried out to establish a system of nonoscillatory extremum (see above).
Oscillatory system thanks to the filter more robust. Nonoscillatory system is simpler and more reliable.
For brevity, only give a description of "turtle" "Tortilla-1" (with vibrational search) 1.
Fig. 38 is a diagram of extremal control the direction of "turtle" "Tortilla-1". It used a system of extremal control step considered in the previous chapter.
System of extreme search for "turtle" "Tortilla-1 operates as follows. Voltage, provided by a photocell CG-4, augmented by an electronic amplifier and then fed to the contact device stepper distributor WAF, which has four fields. The cycle of the system is very simple. At the first contact of the second field stepper valve makes erasing the previous record with the first electronic storage device 3U1, and the second contact of the first field is made on it new (first) record voltage. Third contact, the second field carries erasing records from the second storage device 3U2, and the third contact, the fourth field includes the voltage on the servo motor CM1, which turns the photocell step 7,5 °. After this, the fourth pin of the first field is the second record amplified voltage to the photocell 3U2, and the fifth contact, a third of the field – a comparison of the stress of the first and second record. Element of the logical steps ELD includes servo CM1 in the direction of securing the movement (rotation) of the photocell to the direction of the extreme (highest or lowest) illumination. then the cycle of operations is repeated again.
eleventh and twelfth contacts of the fourth field (Fig. 39) are used to: a) the inclusion of voltage
1 "Turtle" "Tortilla-2" described YV Krementulo in the journal "Automation", A2 2, 1959.
Ser vomotor SM2 longitudinal movement of "turtle", and b) circuit for a short time relay circuit changes tropism; 1) the transition from the program \ 5 3 to the program \ 5 1 or 2 if the "Tortoise" obstacles encountered (see Table. 5) d) to supply pulses to the reaction scheme "turtle" to the sound (Fig. 40). The measuring element of the system is a bridge with two M stabilivolt SG-AP, see Fig. 38. At a certain voltage (selectable Fig. 40. Scheme of the reaction of "turtle" "Tortilla" on the whistle. Arbitrarily by setting the resistance of some of the bridge) the bridge output voltage changes sign, which leads to a shift of the polarized relay RP tropism changes.
Polarized relay IS2 and RPZ constitute an element of logical steps ELD scheme equivalence.
Charging the battery is made through the contact bus SH and releregulyator PP. Voltage DC battery with vibrator MP is converted to high voltage alternating current. Last rectified and used to power
Under the change of tropism "turtle" refers to the transition from search to search the world of darkness and vice versa, depending on battery voltage.
9 441 129
anodes 3U and amplifier photocurrents. Sensor obstacles DC at a meeting with the "turtle" is no impediment, and is triggered by relay RP, 4 modifies the program moves ahead on the program of the back. In this case, "turtle" makes one step back (at the eleventh contact) and for some time moving in a direction perpendicular to the direction of the light sources. This is achieved by inserting instead of the main support
Fig. 41. General view of the "turtle" "Tortilla-2".
photocell directed perpendicular to the axis of "turtle". Mode to avoid obstructions brief: as soon as the movable contact stepper distributor comes back to the 12th slats, then, as seen from the scheme (Fig. 39), the main program "Turtles" is restored.
The frequency of pulses determines the speed of action "Turtles". Speed of movement "turtle" is sufficient, if the total turnover of the distributor is used for the second. As pulse generators can use the contact ustroytvo waved in a separate engine.
We now consider the effect of the chain, carrying out the reaction of "turtle" on the whistle (Fig. 40). As the microphone M used piezoelectric handset. Scheme of the resonant amplifier circuit is similar to the acoustic / radio, described in the journal
"Radio", No. 4 for 1957 Relay R1 at the circuit output is triggered under the effect of sound (a whistle with a frequency of about
9000 Hz) and stops the servomotor both CM1 and SM2 "turtle" (Fig. 39).
Time stop "turtle" is determined by the parameters of load (1? And C) detector. If the whistles are rarely repeated, the capacitor C has time to be discharged, the relay R1 releases the contact, and "turtle" again begins to move. If, however, often followed by the whistles, the voltage across the relay coil R1 rises above a certain limit, relay P2, shunts the relay contact P1 and "turtle" ceases to respond to whistles. Blocking relay P2 is removed the main distributor in passing through the 12th contact, if the capacitor at that time sufficiently discharged.
Schedule a typical path of "turtle" "Tortilla-1" to the light source is a broken line. General view of the "turtle" "Tortilla" is presented in Fig. 41.
These elements of the "turtle" "Tortilla" shown in Fig. 38-40.
Step turning the photocell is a quantity from 7.5 to 60 ° at a frequency of pulses from 0,5 to 3 pulses / sec. "Turtle" responds to the light source (incandescent lamp of 25 W) at a distance of 3 m.
Some additional technical data "turtle" "Tortilla-1"
RP – polarized relay type RP;
SM – engines pas 24 or vitamin. 27 in;
SHI – step seeker;
Tr – transformer with:
= 2 x 60-vit; D1 = 0.6 mm;
W2 = W3 = 3000 vitamin; d23 = 0.12 mm; V1V2 – rectifiers, gathered at the DW-TS24;
B – Battery type 5 ICH-10: Tacho Voltage 6.

Pdf is Russian original here.