Posts Tagged ‘1985’

1985 – “Aquarobot” Aquatic walking robot – (Japanese)


An early Artist's conception from the late 1970's. Source: Robots: Fact, Fiction, and Prediction by Jasia Reichardt, 1978.


Source: Field Test of Aquatic Walking Robot for Underwater Inspection
Junichi Akizono, Senior Research Engineer Mineo Iwasaki, Chief of Robotics Laboratory Takashi Nemoto, Member of Robotics Laboratory Osamu Asakura, Member of Robotics Laboratory – Machinery Division
Port and Harbour Research Institute, Ministry of Transport 1-1, Nagase 3-chome, Yokosuka, Japan 239
Aquatic walking robot named "AQUAROBOT" has been developed. Main purpose of the robot is to carry out underwater inspecting works accompanied with port construction instead of divers.
This robot has two main functions. One is the measurement of the flatness of rock foundation mound for breakwaters by the motion of the legs while walking. The other is the observation of underwater structure by TV camera.
AQUAROBOT is six-legged articulated "insect type" walking machine. Operation is fully automatic because this robot is so-called intelligent mobile robot. The working depth is up to 50m.
AQUAROBOT has an ultrasonic transponder system which is long base line type as a navigation device.    It also has an underwater TV camera with ultrasonic ranging device at the end of the manipulator on the body.
Through the field tests, the performance of the robot was proved to be sufficient for the practical use.
Test results are as follows.
Walking speed is 6.5m/min. on the flat floor in the test pool and 1.4m/min. on the irregular rubble mound in the sea. In the case of navigation, the positioning accuracy is within ±21cm.    The robot can measure the flatness of rubble mound by the motion of the legs with the same accuracy as divers.
key words: walking robot, underwater application, inspection work.


1. Introduction
The underwater inspection works accompanying port construction are carried out by manual labor of divers. However, the efficiency and safety of underwater activity are not sufficient because underwater condition is austere.    Increasing risks and lower working efficiency of port construction work at deeper sea area and shortage of divers make the situation worse. Therefore, it is necessary to develop the underwater inspection robot.
The robot which carries out the underwater inspection work taking the place of divers should have good stability, positioning ability and the ability to move on uneven seabed. Compared with free-swimming type, the bottom-reliant type is good for this purpose. We selected walking type, not wheel type or crawler type or Archimedean screw type, as the underwater Inspection robot.
We started this project from 1984 and have made 3 models up to now. The 1st one made in 1985 is an experimental model for overground test. The 2nd one made in 1987 is a prototype. The 3rd one made in 1989 is light-weight type.
In this paper, the walking test of prototype in the sea is mentioned.


2.Outline of AQUAROBOT
2.1 Hardware
AQUAROBOT is six-legged articulated "insect type" walking machine.    Each leg has three articulations, and they are driven semi-directly by DC motors which are built inside the leg. The articulations are mechanically independent to each other.
All the motions are controlled by a tiny lap-top micro computer (CPU 80286), which makes the robot be able to walk on irregular rough terrain. The measurement of the profiles of seabed is possible by recording the motion of the end of the legs while it walks.
AQUAROBOT can walk in any direction without changing its quarter and can turn within its own space. Each leg is equipped with a tactile sensor on its end and there are two inclinometers, a gyrocompass, and a pressure sensor in the body.
The prototype model has 150cm legs and weighs 857kg. It can be operated 5Om deep in the sea. A manipulator for underwater TV camera with ultrasonic ranging device is mounted on the body. The robot is connected by optical/electric cable of 100m long to the control unit on mother ship.
Prototype has an ultrasonic transponder system which is long
base line type as a navigation device.    It also has an underwater TV camera with ultrasonic ranging device at the end of the manipulator on the body.
Main dimensions and the positions of the sensors are shown in Fig.2 and the specifications in Table 1.
5.1    Description of the Robot System
The Port and Harbour Research Institute has constructed three models of six legged underwater walking robots. This series of experiments has been conducted on the first model. The AQUAROBOT hardware system consists of a main body and six radially symmetrically located legs. Each leg, made of anti-corrosive aluminum, has three degrees of freedom. The axis of the first joint is vertical and those of the second and third joints are horizontal. A disk-shaped foot is connected through the bottom limb of a leg through a passive spherical joint. One tactile sensor is attached to each foot. Each side of the hexagonal body is 30 centimeters long. The limbs of a leg are 14, 25, and 60 centimeters in length respectively. The motors for the second and third joints are mounted inside the limbs and, through harmonic gears and bevel gears, directly drive the limbs. This design allows their weights to be distributed over legs and makes water-tight structures easy. The powers of the first, second, and third motors are 80,120, and 120 watts respectively. The total weight of AQUAROBOT in the air is 280 kilograms.
The control computer is an NEC PC-9821Xt/C1OW based on a Pentium/90MHz CPU. The software system was written in C++. The sampling time is 50 milliseconds.








Computer simulation.


The project started in 1984 and made 3 models.

See other early Underwater Robots here.

Tags: , , , , , ,

1985 – Nuclear Maintenance Robot “AMOOTY” – Tokyo Uni / Toshiba (Japanese)


1985 – Nuclear Inspection Robot "AMOOTY" climbing stairs in a mock-up of a nuclear power plant.


Before AMOOTY there was MOOTY. No manipulator arm here, just vision and star-wheel propulsion.


Text Source: Inside The Robot Kingdom, Frederik L. Schodt, 1988

If cleverly designed, a robot on modified wheels or tank treads can still have considerable maneuverability. Separate from the ART project, three of the ARTRA members—Mitsubishi, Toshiba, and Hitachi—have been building their own mobile robots for nuclear power plants. Hitachi and Mitsubishi have in the past produced experimental models with modified tank treads that either bend in the middle or reconfigure themselves for stair climbing. Toshiba has created a wheel-based design.
Near Yokohama, inside a mockup of a nuclear reactor that contains stairs, valves, and ladders, Toshiba has experimented with traditional crawler-type robots and even a robot that does nothing but climb ladders. Its current pride and joy is AMOOTY, partly funded by MITI money. AMOOTY (an acronym based on the names of the six men at the University of Tokyo who designed it) is a semi-"intelligent" robot with a vision system enabling it to navigate—a TV camera allows it to recognize specially placed symbols in the reactor and a laser beam measures distance. Instead of a traditional industrial-robot-style manipulator, AMOOTY uses one that looks like an elephant trunk with nine degrees of freedom—two more than the human arm.
The most novel aspect of the AMOOTY robot is its means of locomotion. Inspired, perhaps, by the old stair-climbing carts used by Venetian porters, each "wheel" is in the shape of a clover, with each "petal" of the clover containing a smaller, independent wheel. On flat ground the clovers do not turn—only the smaller wheels do. To climb a staircase, or cross over an obstacle, however, the larger clovers themselves are rotated. AMOOTY still has many problems. Its power is supplied by a cable, its speed is too slow, and it is too heavy and large. But it is a stable design. When engineers in a remote command room (watching through television cameras, with robot positions in the reactor displayed on computer screens as both outline and three-dimensional shapes) put AMOOTY through its paces, the "wheeled" robot lurches right up the stairs.
Professor Hiroyuki Yoshikawa of the University of Tokyo Mechanical Engineering Department led the team that worked with Toshiba to design AMOOTY. "In Japan we tend to neglect research on the basic purpose of our design," he says. "My specialty is design theory, and I consider design to be the science of function. For AMOOTY, for example, we used functional analysis to research the concept of maintenance in nuclear reactors, and came up with a system of locomotion and an arm that does not exist in nature."


The manipulator arm had 9 degrees-of-freedom.



Brief technical specs of AMOOTY.

robot_0017 - Copy-x640

Interesting comment by Hiroyuki Yoshikawa, one of AMOOTY's developers:

Despite Japan’s leadership in robotics, nuclear plant operators assumed that robots would not be needed to deal with an accident. The Times quoted Hiroyuki Yoshikawa, an engineer and a former president of the University of Tokyo, as saying, "Instead, introducing them would inspire fear, they said. That’s why they said that robots couldn’t be introduced."

Even though Yoshikawa, a robotics expert, was among those who built a prototype called Mooty that was designed to handle high levels of radiation and navigate rubble that might be expected as a result of a nuclear accident, the robots were not put into production. Consequently, after the Fukushima accident, Japan had to rely "an emergency shipment of robots from iRobot, a company in Bedford, Mass., more famous for manufacturing the Roomba vacuum. On Friday, Tepco deployed the first Japanese-made robot, which was retrofitted recently to handle nuclear accidents, but workers had to retrieve it after it malfunctioned."

Yoshikawa told the Times that Japan’s rejection of robots designed to respond to nuclear accidents "was part of the industry’s overall reluctance to improve maintenance and invest in new technologies."

Source: Powermag


The only English written paper I found on AMOOTY is dated  1985. I don't  know how accurate the caption dates are on MOOTY (1978) and AMOOTY (1980).

T. Arai, H. Yoshikawa, M. Takano, S. Ozono, G. Odawara, T. Miyoshi, K. Shimo, and T. Mikami. A stair-climbing robot for maintenance: "AMOOTY". In Proc. of the Seminar on Remote Handling Equipment for Nuclear Fuel Cycle Facilities, pages 444-456, 1985.


AMOOTY was further advanced by Toshiba and now called "AIMARS" – (Advanced Intelligent MAintenance Robot System).

See other early Teleoperators and Industrial Robots here.

See other early Walking-wheels here.

Tags: , , , , , , ,

1985 – ACEC Mobile Inspection Vehicle – (Belgian)


1985 – ACEC Mobile Inspection Vehicle



The manipulators are master-slave force feed-back and electrically driven.



The ACEC Vehicle for remote inspection and intervention has a minimal footprint when the treads are folded up and the manipulator arms are also folded.



Publication number EP0197020 A1
Publication date Oct 8, 1986
Filing date Mar 7, 1986
Priority date Mar 9, 1985
Inventors Raymond Pinsmaille, Costa Cabral Gaivao Luis Da, Alain Duchene, Dominique Colard
Applicant ACEC, Société Anonyme




See other early Space Teleoperators here.

Tags: , , , , , , ,

1985 – Manned Autonomous Work Station (MAWS) – Brand Griffin (American)


1985 – Manned Autonomous Work Station (MAWS) by Brand Griffin.


For more detail see Griffin’s pdf here.


Image and text sourced from drell-7.

“With restrictions put on by current EVA technology, there’s no such thing as being able to put on your spacesuit, go out the airlock and deal with an emergency these days. A minimum of about 20 hours of slow decompression and prebreathing pure oxygen is required before anyone goes out into space. Thats because the cabin environment of the Space Station, and the Shuttle is oxygen/nitrogen at sea level pressure, while the suits operate with pure oxygen at 5 p.s.i. They do that because, with present, vintage 1980 space suits, the arms and legs become impossible to bend if the pressure is any greater. The other problem is radiation shielding. For long stays outside, or any meaningful work beyond the Earth’s ionosphere, the present suits just have inadequate radiation protection.

The potential solution is Manned Autonomous Work Station (MAWS.) It will have the same internal pressure as the station, or whatever long duration habitat we have in the future, because it doesn’t have flexible joints. Instead it uses a couple of miniature versions of the station’s robot arm. Its possible to put much better radiation shielding around MAWS, too. Probably the first exploration of asteroids or moons of Mars will be done in something like this design.
So this is the baseline look of the MAWS, as loosely worked out by NASA.”


Artist: Paul Hudson


Possibly an early depiction of the MAWS. This one by Robert McCall.


MAWS updated to FlexCraft in 2010.

See other early Space Teleoperators here.

See other early Lunar and Space Robots here.

1985 – Tomy Dustbot – (Japanese)

Dustbot ® 5409; SO-G ® was the first purpose-built robot to feature a built-in vacuum cleaner. Dustbot's large eyes flash red and his arms move creating a sweeping action for the broom, while his vacuum functions. He really vacuumes, he picks up small pieces of paper, dust, crumbs, etc. He senses any edge and turns away, for he is the robot with a brain, that vacuums.

For more images, see TheOldRobots.

See other early remote-controlled and robotic vacuum cleaners and floor scrubbers here.