Posts Tagged ‘1984’

1984-93 – Undersea Robot Concept – ART Project (Japanese)

ART-robots
The ART Project’s Nuclear Inspection Centaur Robot

After the earthquake last year and the resulting damage to the Fukushima nuclear plant, observers criticized Japan’s lack of preparedness. In particular, many felt that the Japanese robotics sector’s focus on expensive humanoids had squandered time and resources better spent on more specialized robots.  However, this isn’t totally accurate.  The Japanese government, corporations, and universities have been working on robots for just this sort of problem for decades.  Back in the 1980's the Japanese government invested 20 billion JPY (still less than $100 million dollars at the time) into a massive eight-year program to build three types of advanced robots for hazardous environments.

The ART (Advanced Robotics Technology) Project had goals that were too big for any one institution to achieve, so a consortium called ARTRA (Advanced Robotics Technology Research Association) was formed. Financed and controlled by the Agency of Industrial Science and Technology, ARTRA brought two major government organizations, the Mechanical Engineering Laboratory (MEL; now known as AIST) and the Electrotechnical Laboratory (ETL), together with 18 corporations under the same banner, along with the support of academia.

The ART robots were designed for three major areas: nuclear plants, undersea oil rigs, and a third for disaster prevention in refineries.

ART-robots-undersea-x640

The undersea robot looked like one of the pods from 2001: A Space Odyssey, with multiple arms and manipulators. It would have to function 600 feet underwater, in tides moving at 2 knots, and in very poor visibility.  Finally, the disaster response robot would put out fires with a hose, move on six legs (each ending with a wheel) and had an arm for closing valves. It would have to work for thirty minutes despite temperatures in the range of 400 degrees (750 degrees Fahrenheit).


For more on the 1984-93 Japanese ART Project, see here.

See other early Underwater Robots here.


Tags: , , , , ,

1984 – NEWTSUIT – R. T. “Phil” Nuytten (Canadian)

newtsuit-side-01-x640

The NEWTSUIT by R. T. "Phil" Nuytten.

 phil-nytten_4

Phil Nuytten poses with his NEWTSUIT.

jeek-newtsuit-x640

Jacques Cousteau with a Newtsuit.

newtsuit_60-x640  newtsuit-line-drawing1-x640 newtsuit-partial-construction-x640  newtsuit-sides-x640 newtsuit-side-x640

newtsuit-back-x640

newtsuit-x640
Phil Nuytten has been instrumental in the development and current acceptance of Atmospheric Diving System technology. In 1977, he began work on a revolutionary new one-atmosphere diving suit that resulted in a patented break-through in rotary joint design, and formed the basis for the world-famous NEWTSUIT. The NEWTSUIT is a thousand foot-rated hard suit that completely protects the wearer from outside pressure and eliminates the need for decompression while still maintaining mobility and dexterity – a “submarine that you wear”. It is now standard equipment in many of the world’s navies.


In 1974, prior to inventing the Newtsuit, Phil Nuytten bought all rights and patents to the Litton suit (Harris, 1985).

NEWTSUIT/HARDSUIT – 1985 (Canada)

Phil Nuytten developed the NEWTSUIT, after leaving Oceaneering in the 1980's, based on a rotary joint he patented in 1984. The NEWTSUIT, built by Hardsuits International at present a subsidiary of Stolt Offshore, and now called the HARDSUIT, is a truly anthropomorphic suit with articulated arms and legs and just enough room for the operator to pull his arms back into the body of the suit to operate interior controls. The suit is capable of a wide range of motion enabling it to enter some spaces previously accessible only to divers. The original NEWTSUIT, as seen in Figure 21, is now on display at the Vancouver Maritime Museum, B.C.

There are currently three versions of the HARDSUIT available: the original cast aluminum 1000 foot version (HARDSUIT 1000) of which 17 are in service; six versions rated to 1200 feet (HARDSUIT 1200); and a forged aluminum 2000 foot version (HARDSUIT 2000) recently delivered to the U.S. Navy for its submarine rescue program. Additionally, due to the differences in commercial certification and U.S. Navy certification criteria, a commercial version of the HARDSUIT 2000, to be designated the HARDSUIT 2500, will be available to the industry and certified to a depth of 2500 feet.

Source: A SURVEY AND ENGINEERING DESIGN OF ATMOSPHERIC DIVING SUITS – A REPORT by MICHAEL ALBERT THORNTON


Patents:

US4549753-nuytten-1

US4549753-nuytten-2
Rotary joint

Publication number    US4549753 A
Publication type    Grant
Application number    US 06/424,339
Publication date    Oct 29, 1985
Filing date    Sep 27, 1982
Priority date    Sep 27, 1982
Fee status    Lapsed
Inventors    Rene T. Nuytten
Original Assignee    Can-Dive Services Ltd.

Abstract
A rotary joint is provided which is particularly useful in deep-sea diving suits, and which can be constructed in such a way such that resistance to rotational movement or the potential for leakage, does not increase substantially with external pressure on the joint. Preferably, the joint has a sealing member, a retaining member, and a central member disposed axially between the sealing and retaining members. The central member has an annular first end dimensioned and axially slidably mounted on a retaining end of the retaining member so as to define a first variable volume chamber there between. The central member also has a second end with inner and outer extending annular bearing members, each concentric with, and normally rotatably abutting a corresponding sealing surface portion on the sealing member, so as to define annular side walls of a second chamber. The second chamber is interconnected with the first chamber.

US4903941-nuytten-1
Pressure equalizing rotary joint

Publication number    US4903941 A
Publication type    Grant
Application number    US 07/239,117
Publication date    Feb 27, 1990
Filing date    Aug 30, 1988
Priority date    Sep 4, 1987
Fee status    Paid
Also published as    CA1296032C, DE3869021D1, EP0305989A1, EP0305989B1
Inventors    Rene T. Nuytten
Original Assignee    International Hard Suits, Inc.

Abstract
This invention pertains to a novel rotary joint which seeks to equalize exterior-interior pressure. This rotary joint is useful in permitting free rotary motion between two components connected by the joint in conditions where unequal pressures exist at the interior and exterior of the joint. It includes a rotary joint comprising: (a) first annular member means adapted to be connected to the end of a first tube-like object; (b) second annular member means adapted to be connected to the end of a second tube-like object; (c) intermediate member means adapted to be positioned between the first annular member means and the second annular member means and being capable of moving independently of the first and second annular member means, said intermediate member means defining a first chamber between said intermediate member and the first annular member and a second chamber between said intermediate member and said second annular member; (d) first sealing means associated with the first annular member means and the intermediate member means and adapted to seal the first chamber from the interior and exterior of the joint; (e) second sealing means associated with the second annular member means and the intermediate member means and adapted to seal the second chamber from the interior and exterior of the joint; and, (f) resilient valve means adapted to enable pressure in the first chamber and pressure in the second chamber to seek to equalize when the respective pressures are unequal.

newt-tsuit-1984-x640


See other early Underwater Robots here.


1984-93 – Nuclear Inspection Centaur Robot – ART Project (Japanese)

ART-robots
The ART Project’s Nuclear Inspection Centaur Robot

After the earthquake last year and the resulting damage to the Fukushima nuclear plant, observers criticized Japan’s lack of preparedness. In particular, many felt that the Japanese robotics sector’s focus on expensive humanoids had squandered time and resources better spent on more specialized robots.  However, this isn’t totally accurate.  The Japanese government, corporations, and universities have been working on robots for just this sort of problem for decades.  Back in the 1980s the Japanese government invested 20 billion JPY (still less than $100 million dollars at the time) into a massive eight-year program to build three types of advanced robots for hazardous environments.

The ART (Advanced Robotics Technology) Project had goals that were too big for any one institution to achieve, so a consortium called ARTRA (Advanced Robotics Technology Research Association) was formed. Financed and controlled by the Agency of Industrial Science and Technology, ARTRA brought two major government organizations, the Mechanical Engineering Laboratory (MEL; now known as AIST) and the Electrotechnical Laboratory (ETL), together with 18 corporations under the same banner, along with the support of academia.

The ART robots were designed for three major areas: nuclear plants, undersea oil rigs, and a third for disaster prevention in refineries.

Hitachi-Centaur-11

The nuclear inspection robot would have a sensor head, four legs, two 7-DOF arms, and four-fingered hands with pressure sensitive finger tips (this configurarion led to it being known as the Centaur robot). It would be paired with a smaller, wall-climbing partner that used suction cups to adhere to wall surfaces. This would allow it to “climb up and down stairs, step over piping or other impediments, and relocate itself at high speed.”

It would have to work in 70 degrees (158 degrees Farenheit), 90% humidity, and 100 roentgens of radiation per hour. What started as a 1/3-scale model of the four-legged mechanism eventually became a robot measuring 188 cm (6’2″) tall, 127 cm (4’2″) long, and weighing 700 kg (1,543 lbs).

ART-robots2

The undersea robot looked like one of the pods from 2001: A Space Odyssey, with multiple arms and manipulators. It would have to function 600 feet underwater, in tides moving at 2 knots, and in very poor visibility.  Finally, the disaster response robot would put out fires with a hose, move on six legs (each ending with a wheel) and had an arm for closing valves. It would have to work for thirty minutes despite temperatures in the range of 400 degrees (750 degrees Fahrenheit).

Susumu Tachi, director of the robotics department at MEL at the time, was in charge of developing the robots’ teleoperation system. Although the robots were intended to have some degree of autonomy, the majority of their work would be done under the direct control of a human operator. Basically, the human operator would wear 3D glasses or some other head-mounted display, and control certain robot functions using haptic controls and a pair of joysticks. Later Tachi established a lab at Keio University, where many unique “tele-existence” projects would take shape.

Hitachi-Centaur-Teleoperati

Teleoperating the Centaur nuclear plant robot

The first conceptual illustrations were unveiled in 1984, but the actual construction of the robots wouldn’t begin until 1987. There was a great deal of conflict between ARTRA members, not to mention over 40 research themes, so a huge amount of preparation work had to be completed. One researcher called the nuclear inspection robot’s configuration the result of “a lack of imagination”, and Shigeo Hirose (of TITECH’s Hirose-Fukushima Lab) had this to say about it:

    “It’s almost impossible to use a four-legged robot in a nuclear reactor. The passageways are too narrow, and it’s supposed to carry a huge load of equipment. I don’t think it’s practical, and I keep telling the people in charge that they should use a snake design, which no one else has used. We need a more functional design.

    I think the whole thing is a mess. They’re starting out without a long-range, completed vision, but with many corporations and a great deal of politics involved. The result, I fear, will be a very boring robot.”

Hitachi-Centaur-01

Part of the reason the nuclear inspection robot has legs is because Hitachi won the contract to work on it, having worked with Waseda University on bipedal robots.  The Waseda-Hitachi Legs [WHL-11] appeared at the Tsukuba Expo ’85. Somewhat prophetically, Hitachi’s Hideo Maki had this to say about the Centaur robot:

    “I think two legs is the ideal, and I would like to develop such a robot, but technologically that’s ten to fifteen years in the future, so we’re settling for four. Professor Kato says that man used to walk on all fours, but that when he stood up and freed two of his limbs, a whole new world opened up for him. Our robot has four legs, and two arms, and we think it will yield the same results.”

Changes in specifications along the way also slowed progress. For example, Hitachi (responsible for building the Centaur robot’s legs) had planned for the robot to carry up to 100kg (220 lbs), but then the companies responsible for the sensors and other equipment kept making requests, forcing redesigns. The researchers studied the walking gaits of horses, elephants, hippos, and rhinos in an effort to better replicate four-legged walking, resulting in a speed of 2.5 kph (1.5 mph).

Hitachi-Centaur-04

One of three Hitachi quadrupeds developed circa 1990

In 1993, the robot appeared in the Japanese pavilion at the Taejon Expo in South Korea. By that time the prototype had successfully completed a few trials, but didn’t make the jump into real use. And sadly, both photos and video of the robot experiments are extremely scarce, despite it being such a large project. Hitachi, for its part, says that the lessons learned from this and other robot projects are reflected in their recent robots, such as the EMIEW humanoids.

Many household names can be found in the following breakdown of responsibilities. Some of these corporations were selected because of their prior involvement with similar technologies. Hitachi, Mitsubishi, and Toshiba, for example, had developed robots for nuclear plants independent of the ART project. And Kawasaki, which builds Japan’s submarines, played a significant role in the development of the undersea robot.
1. Basic Technologies
A. Locomotion

    MEL
    ETL
    Fuji Electric R&D
    Yaskawa Electric

B. Control

    MEL
    ETL

C. Systems Support

    ETL
    Int’l Robotics & Factory Automation Center

2. Nuclear Plant Robot
A. High Reliability

    Mitsubishi Electric
    Mitsubishi Heavy Industries
    Japan Power Engineering & Inspection

B. Radiation Resistance

    Hitachi
    Japan Power Engineering & Inspection

C. Locomotion

    Hitachi
    JGC Corp
    Toshiba
    Japan Power Engineering & Inspection

D. Manipulation

    Mitsubishi Heavy Industries
    Fanuc
    Japan Power Engineering & Inspection
    Fujitsu
    Toshiba

E. Remote Control

    Mitsubishi Electric

3. Undersea Robot
A. Undersea Robot Positioning & Navigation:

    Mitsui Engineering & Shipbuilding
    Kawasaki Heavy Industries
    Sumitomo Electric Industries

B. Undersea Robot Vision

    Oki Electric Industries

C. Undersea Robot Manipulation

    Kawasaki Heavy Industries
    Komatsu Ltd.

D. Undersea Robot Supervisory Control

    Oki Electric Industries
    Mitsui Engineering & Shipbuilding

4. Disaster Prevention Robot
A. Durability

    Ishikawajima-Harima Heavy Industries

B. Sensors

    Matsushita Research Institute
    NEC Corp.

C. Environment Adaptation

    Ishikawajima-Harima Heavy Industries
    Kobe Steel
    Int’l Robotics & Factory Automation Center

Much of the information in this article was assembled from Frederik Schodt’s Inside The Robot Kingdom, which has a more detailed account of the project.

Source: Plasticpals


See other early Teleoperators and Industrial Robots here.

See other early Walking Machines here.


Tags: , , , , ,

1984-7 – Orbital Maneuvering Vehicle (OMV) + Kits – NASA (American)

OMV-NASA-x640

An OMV leaves the payload bay of a Shuttle to deliver or retrieve satellites in orbits beyond the reach of the Shuttle itself.

OMV-diag-x640

The basic OMV configuration. Any manipulator arm attachments are via appropriate kits, such as Integrated Operations Servicing System (IOSS) and Tumbling Satellite Recovery (TSR) both shown below. These are front-ended to the OMV.

telepresence-console-x640

This is the OMV control console in the simulator assembled at Marshall Space Flight Center. The operator uses “telepresence” to guide the spacecraft through a docking manoeuvre.

OMV-model-x640

A model of an Orbital Maneuvering Vehicle float on air-bearing pads in the “flat floor” simulation facility at the Marshall Space Flight Center.

space-manipulator-warden_0003 - Copy-x640

OMV with IOSS kit.

space-manipulator-warden_0005 - Copy (2) - Copy-x640

Simulation exercises have shown that the IOSS manipulator arm is capable of replacing faulty electronic modules in ailing spacecraft.

space-manipulator-OMV-test2-x640

Shown here is the IOSS mock-up at Marshall SFC. At the top is the dummy satellite that needs repair, in the centre the IOSS robot arm, below which is the IOSS craft itself.

    OMV-Manipulator-MM-x640

Martin Marietta has developed a Protoflight Manipulator Arm for space operations that can perform intricate jobs, such as reconnection of wires and opening of doors. The end-effector is shown in detail below.

JPL-PFMA-Smart-Hand-x640

 OMV-TSR-kit-x640

The OMV with a Tumbling Satellite Recovery Kit.


American space tug. Cancelled 1987. The Orbital Maneuvering Vehicle (OMV) was an important component in NASA’s future Space Station plans in the 1980s.
As a separately funded part of the 1984 Space Station plan, the OMV was intended as a short range robotic ‘space tug’ that could move payloads about in the vicinity of the Shuttle and Space Station.
NASA awarded three $1-million study contracts to Vought, Martin Marietta and TRW in July 1984. The total estimated cost was then $400 million.
TRW won the $205-million OMV phase B contract in June 1986. The TRW Orbital Maneuvering Vehicle would use a separate propellant / propulsion module that would be returned to Earth for refueling by the Shuttle. The TRW Orbital Transfer Vehicle could also be equipped with enlarged propellant tanks for demanding missions.
The OMV was then combined with the Flight Telerobotic Service into the Robotic Satellite Servicer concept. However estimated costs had grown to $465 million by 1987, soon after which further work was cancelled.

Text by Marcus Lindroos


See other early Space Teleoperators here.

See other early Lunar and Space Robots here.


Tags: , , , , , , ,

1982-4 – MAR-1 Agricultural Robot – Moscow Institute of Agricultural Engineers (Soviet)

Autonomous Mobile Robot (MAR-1) [Мобильный автономный робот (МАР-1)] was created by the Division of agricultural robotics at the Moscow Institute of Agricultural Engineers in the early 1980s in the Soviet Union.

English text and some images sourced from Vadym Shvachko's Robotic blog here.

The first model of MAR-1.

Image source – Юный техник 1982-11, страница 16

The first model of MAP-1 was designed to serve the livestock complex. The robot was made so that it can use existing walkways on farms (calculated per person), modern equipment and tools.

Wheeled and tracked models MAR-1.

The height of the robot – 1850 millimeters, the area of ​​the base – a third of a square meter. He has a pair of hands that have eight degrees of freedom. Machine body rotates in either direction around a vertical axis. This further increases the possibility of "hands." Hydraulic "muscles" of each hand, lift up to 75 pounds of cargo. Tactile transducers allow fingers to register or impact compression force in the range of 0.0294 g to 112.7 kg, the temperature is from 0.4 to 180 º C and humidity of 3 to 99 percent. MAR-1 is made prefabricated (detachable hand, aggregated oil-hydraulic, power, navigation and locating subsystem).

The scheme MAR-1

1 – Power Touch sensitization, 2 – Block hand-grips;
3 – Automatic control unit and communication, 4 – hydraulic power unit;
5 – The navigation block, 6 – Power supply unit.

The internal clock is fed MAR-1 team to start work. In memory of automatic operator contain information about the livestock complex technological environment, all of the aisles, entrances and exits, production sites. There is also a sub-system, which will not allow the robot to stay on track. Arriving at the workplace, MAP-1 itself is connected to the power supply, communication lines, control panel or computer. During operation, the device automatically controls the state of the environment (humidity, fumes) and animals (temperature, thickness of subcutaneous fat).

see pdf here