Posts Tagged ‘1966’

1966-7 – Space Taxi (Concept) – LTV (American)

MSFC space taxi x640 1966 7   Space Taxi (Concept)   LTV (American)

LTV Space Taxi concept.

LTV spacePod09 1966 7   Space Taxi (Concept)   LTV (American)

Mock-up using models.

LTV spacePod11 1966 7   Space Taxi (Concept)   LTV (American)

LTV spacePod12 1966 7   Space Taxi (Concept)   LTV (American)

Full-scale mock-up

Images sourced from here as original pdf currently unavailable.

•    Ling-Temco-Vought Maneuvering Work Platform and  Space Taxi
In 1966, Ling-Temco-Vought (LTV), in conjunction with Argonne National Laboratory (ANL), completed a thorough investigation of manned maneuvering manipulator spacecrafts for the NASA Marshall Space Flight Center. The objectives of the LTV program, called the Independent Manned Manipulator (IMM) Study, were as follows
– Produce the conceptual designs and mockups of two selected IMM units which extend and enhance man's utilization in the support of AAP experiments and overall areas of EVA during future space exploration.
– Define Research, Development, and Engineering (RD&E) required to implement the IMM systems.
– Develop preliminary program definition plans which lead to flight-qualified hardware in the 1969-1971 time period.
The IMM vehicle designs were evaluated against NASA-specified criteria, and two concepts were selected for detailed analysis. the Maneuvering Work Platform (MWP) and the Space Taxi. The preliminary program definition plans were developed for obtaining the MWP flight-qualified hardware in the 1969-1971 time period and 1972-1974 for the Space Taxi.

space taxi schematic x640 1966 7   Space Taxi (Concept)   LTV (American)

•    Space Taxi Configuration
The Space Taxi configuration, selected and recommended for use in 1975 and beyond, features a multiple crew station built into a rotary vehicle which permits orientation of each operator station relative to the worksite. Electrical bilateral master-slave manipulators were selected by AEC/ANL for incorporation into the Space Taxi configuration.
Figure 5-18 presents the preliminary design of the selected Space Taxi concept developed during the detail analysis phase. The basic vehicle consists of a cylindrical, structural shell, the center portion of which is a pressure vessel forming the crew compartment. The upper and lower unpressurized compartments contain vehicle subsystems and equipments. After worksite attachment, the basic taxi is free to turn about its longitudinal axis in rotary fashion. The rotational motion is accomplished with the upper and lower turrets which support the three anchoring and docking arms. Attached to the sides of the Taxi are the two maintenance manipulator slave arms. An Apollo docking adapter and hatch and an extravehicular maintenance egress hatch are provided. A major element inside the crew compartment is the dual function manipulator master controller. It can swing 180deg to serve as the worksite anchoring arm controller and is a bilateral maintenance manipulator controller.
The Space Taxi is designed for one crewman with the capability to carry another man in a rescue situation. The craft would have a range of approximately 1 1/4 miles in any orbital direction. Like the MWP, its normal duration is 8 hours with a rescue contingency of 2 hours. The physical characteristics of the Space Taxi are:
– Overall length* – 150 inches
– Overall width. – 84 inches (maximum)
– Gross weight (nominal)** – dry, 3198 pounds; wet, 3474 pounds.
* Maximum stowage envelope
** Includes 732 pounds for crew systems and tools/ spares
Translation/Stabilization/Control Subsystem
The Space Taxi uses a hybrid stabilization and control system consisting of control moment gyros (CMG) and jet reaction components. Its characteristics are:
Propulsion:
Propellant – Monopropellant hydrazine
Total Impulse – 51,000 lb/sec.
Total deltaV capability – 488 ft/sec.

Stabilization and Control:
Stabilization and Control Deadband -+2deg
Acceleration (maximum)
Angular – Roll – 16.3deg/sec2
Pitch – 15deg/sec2
Yaw – 40deg/sec2
X – .97 ft/sec2
y – .48 ft/sec2
Z – .48 ft/sec2
Number of thrusters – 24 (25 lbs. max. thrust each)
Rotational rates (maximum)
Roll – 13.1deg/sec.
Pitch – 12deg/sec.
Yaw – 31.80deg/sec.
Actuator Subsystem
The actuator subsystem consists of three electrically connected bilateral docking and anchoring arms used for stabilization at the worksite and two electrically connected bilateral manipulators used for tasks at the worksite.
Environmental Control Subsystem
The SpaceTaxi ECS/LS system provides a 5 psia, 70/30 percent, oxygen-nitrogen atmosphere for closed-cabin operation.
ECS/LS Duration – Nominal    8 hours
Contingency, 2 hours
Metabolic Rates – Average    1250 Btu/hr.
Peak    In excess. of 2150 Btu/hr.
Total heat load capability – 47,703 Btu Repreasurization cycles – 2
A Space Taxi weight summary is shown in Table 5-4 [below].

 1966 7   Space Taxi (Concept)   LTV (American)


Goertz ANL unmanned robot configuration   Copy x640 1966 7   Space Taxi (Concept)   LTV (American)

From 1960, Ray Goertz, who invented electrically remote manipulators for the nuclear industry, together with his team at Argonne Nuclear Laboratories (ANL), were engaged by NASA to specify teleoperator configurations for the Lunar space program. The result is illustrated above.

It should be noted that floating vehicles share one problem. This is their inability to stay immobile relative to the object on which they must act. Hence, they are equipped with docking arms, other than the manipulator(s) directly intended to execute the task, to attach them to the object of their task, whether this is another satellite or an underwater oil platform.

The LTV Space Taxi follows this generalized configuration.


Grappler layout and prototype.

LTV podArm02 1966 7   Space Taxi (Concept)   LTV (American)

LTV podArm03 1966 7   Space Taxi (Concept)   LTV (American)

LTV podArm04 1966 7   Space Taxi (Concept)   LTV (American)

LTV podArm05 1966 7   Space Taxi (Concept)   LTV (American)

LTV podArm06 1966 7   Space Taxi (Concept)   LTV (American)

Images sourced from here as original pdf currently unavailable.


See related LTV Space Horse here.

See other early Teleoperators here.

See other early Lunar and Space Robots here.


1966-7 – Space Horse (Concept) – LTV (American)

1967 space horse LTV x640 1966 7   Space Horse (Concept)   LTV (American)

Space Horse – Bearing a strong resemblance to a mechanical horse in this mockup of a Maneuvering Work Platform, an open space-  going tool shop. Design work on tha platform was done under contract to the National Aeronautics and Space Administration's Marshall Spoce Flight Center at Huntsville, Ala., by LTV Aerospace Corporation's Missile and Space Division.

ltv space horse b x640 1966 7   Space Horse (Concept)   LTV (American)

ltv space horse c x640 1966 7   Space Horse (Concept)   LTV (American)

•    Ling-Temco-Vought Maneuvering Work Platform and  Space Taxi
In 1966, Ling-Temco-Vought (LTV), in conjunction with Argonne National Laboratory (ANL), completed a thorough investigation of manned maneuvering manipulator spacecrafts for the NASA Marshall Space Flight Center. The objectives of the LTV program, called the Independent Manned Manipulator (IMM) Study, were as follows
– Produce the conceptual designs and mockups of two selected IMM units which extend and enhance man's utilization in the support of AAP(Apollo Applications Program) experiments and overall areas of EVA(ExtraVehicular Activity) during future space exploration.
– Define Research, Development, and Engineering (RD&E) required to implement the IMM systems.
– Develop preliminary program definition plans which lead to flight-qualified hardware in the 1969-1971 time period.
The IMM vehicle designs were evaluated against NASA-specified criteria, and two concepts were selected for detailed analysis. the Maneuvering Work Platform (MWP) and the Space Taxi. The preliminary program definition plans were developed for obtaining the MWP flight-qualified hardware in the 1969-1971 time period and 1972-1974 for the Space Taxi.
•    MWP Configuration

 1966 7   Space Horse (Concept)   LTV (American)
The MWP configuration selected consists of four basic modules (Figure 5-17b) {RH-same as 4-11 above].
– A forward control
– An aft propulsion module
– A removable tools/spares nodule
– A collapsible cargo frame
The MWP would carry a crew of one and have a rescue capability of approximately 1 1/4 miles in any orbital direction. Its normal duration is 8 hours with a rescue contingency of 2 hours.


The Daily Messenger 22Nov1967 Space Horse x640 1966 7   Space Horse (Concept)   LTV (American)

Source: The Daily Messenger, 22 Nov 1967.

Wilmington News Journal 27Feb1968 LTV Space Horse x640 1966 7   Space Horse (Concept)   LTV (American)

Source: Wilmington News Journal, 27Feb1968


Grand_Prairie_Daily_News_Feb_25_1968

…"Studies continued toward possible use in the Apollo program of the division's [LTV Missile and Space Division] Astronaut Maneuvering Unit, the self-propelled, stabilized back pack unit designed to permit an astronaut in a pressure suit to operate like a one-man space vehicle for assembling and servicing spacecraft in orbit. The division also performed engineering design work on larger extravehicular units, including an open Maneuvering Work Platform described as a spacegoing toolshop and an enclosed version equipped with remotely-controlled manipulators for space tasks."


See other early Teleoperators here.

See other early Lunar and Space Robots here.


1966 – “The Bug” Floor Cleaning Robot from ‘The Glass Bottom Boat’ – (American)

glass bottom boat robot floor cleaner x640 1966    The Bug Floor Cleaning Robot from The Glass Bottom Boat    (American)

In the film 'The Glass Bottom Boat', the inventor Bruce Templeton (Rod Taylor) tries to impress Jennifer (Doris Day) with his "Automatic floor-cleaning" robot after dropping banana peel on the kitchen floor. It only manages to pop out of its door to arc towards the dropped banana peel and through reversed footage, arc right back into its home under the kitchen end cupboard.

glass bottom bug robot vacuum attach x640 1966    The Bug Floor Cleaning Robot from The Glass Bottom Boat    (American)

Bruce then sprinkles flour onto the floor, and the robot again pops out of its door, but this time, a telescopic tube 'nose' extends and sucks up the mess.

"We call it 'The Bug' ", says Bruce, "there'll be one in every home some day."

glass bottom bug vacuum robot 3 x640 1966    The Bug Floor Cleaning Robot from The Glass Bottom Boat    (American)

Jennifer accidentally burns the cooking, and the oven ejects the remains onto the floor, which activates 'The Bug'.

glass bottom bug vacuum robot 4 x640 1966    The Bug Floor Cleaning Robot from The Glass Bottom Boat    (American)

The rigid telescopic 'nose' transforms into a flexible tube for this scene.

glass bottom bug vacuum robot 5 x640 1966    The Bug Floor Cleaning Robot from The Glass Bottom Boat    (American)

'The Bug' returning to its 'house' with Jennifer's thong.

The Visual and Special-effects for this movie were done by J. McMillan Johnson and Carroll L. Shepphird.


This kitchen and robot appears to be inspired by RCA's Automatic Kitchen from 1959.

Note: I first became aware of this robot when researching my post on the Silent Running movie Drones where, from The Making of 'Silent Running',  Bruce Dern said,

"One of the keys to the film is the fact that are that they are not mechanical. The fact that here's a guy all by himself. He's looking at a box…… has no eyes, no mouth, no ears and yet it's alive, and there's something that I respond to as an actor, as a human being, and as a character in the film and that's what's its really all about. Somehow the fact that any little box or machine  I've always been scared of machines anyway, that can move around the floor and stuff. I saw a movie once,  "The Glass-Bottom Boat", it was terrible movie but Rod Taylor and it  had a little machine that cleaned up his kitchen, you know, that he pressed a button it came… [new part 2 from Youtube missing transition] …packing everything there and it scared the shit out of me, man. But I respected it, you know and I thought, that, well, he should talk to it, you know."


See other early remote-controlled and robotic vacuum cleaners and floor scrubbers here.


1966 – Kybernetisches Demonstrationsmodell Schildkröte – Otto von Guericke University (German)

Schildkrote 66 1 1966   Kybernetisches Demonstrationsmodell Schildkröte   Otto von Guericke University (German)

Kybernetisches Demonstrationsmodell Schildkröte
1966 Otto-von-Guericke-Universität Magdeburg

Als Ergebnis einer fast 2jährigen Arbeit der AG "Regeltechnik" im Haus der Pioniere kann ein kybernetisches Demonstrationsmodell vorgestellt. werden – die Schildkröte. Das Modell wurde bereits mehrfach ausgezeichnet. Hier Dipl.-Ing. Walther und Christine Poethke (Wilhelm-Weitling-Schule) bei der Überpfüfung der Lenkanlage der Schilkröte. (UA)
Schildkrote 66 2 1966   Kybernetisches Demonstrationsmodell Schildkröte   Otto von Guericke University (German) 
Die "Eingeweide" der Schildkröte. Sie hat 2 Fotozellen als "Augen", 2 Mikrophone als "Ohren", 2 Motoren zum Antrieb und einen Motor zur Lenkung. (UA)
——–Google Translation————
As a result of almost 2 years of work of the AG "Control systems" in the House of Pioneers, a cybernetic model presented demonstration. be – the turtle. The model has already won several awards. Here Ing. Walther and Christine Poethke (Wilhelm-Weitling-school) in the steering mechanism of Überpfüfung Schilkröte. (UA)
 
The "guts" of the turtle. She has 2 photo cells as "eyes", 2 microphones as "ears", 2 motors to drive and a motor for steering. (UA)

Original article sourced from here.


 

1965-7 – Trallfa spray-paint robot – Ole Molaug and Sverre Bergene (Norweigan)

trallfa spray paint robot 1 x640 1965 7   Trallfa spray paint robot    Ole Molaug and Sverre Bergene (Norweigan)

Images and text source from here.

The original name of ABB’s robot factory at Bryne was Trallfa, a company that pioneered development of a robot for spray painting in 1965 – 67. It has its origin in a company manufacturing wheelbarrows, sack trolleys and transport equipment, which was founded in Bryne in 1941 by Nils Underhaug.
Nils Underhaug, a young man from Nærbø, wanted to enter into the automobile repair trade. By the age of 17, he had already created his first automobile, a monster with four bicycle wheels and a 1 ½ horse power engine, which scared the horses in the neighborhood and aroused the surrounding farmers’ disapproval. But it worked! Little did he know then that he would later come to play an important part in the world of the automotive industry.
Nils completed his education and apprenticeship as an auto mechanic and worked for some years repairing automobiles. In 1941 Nils decided to start his own company. Equipped with a case of automobile tools and USD 2000 in the bank, plus an optimistic outlook on life, he started a trolley factory – Trallfa – on February 1, 1941.
Nils started out with only two employees. The factory grew steadily, and soon Trallfa could move into its first real factory building. Wheelbarrows became their specialty. New designs were created, prices lowered and the new wheelbarrows became a great success. The wheelbarrows were painted by hand, and despite the fact that several workers with modern equipment worked in shifts, painting became a bottleneck.
In 1962, Jæren Automation Association, with Nils Underhaug as chairman, employed Ole Molaug as manager. Molaug was a young mechanical engineer from a small place at the farthest end of a fjord in western Norway. After graduating from technical college, he returned to his father’s workshop to earn a living at the wood turning lathe. He early had the idea to use electronic devices on the shop floor, and wondered a lot about constructing a robot. He learned electronics through private
studies. Later he received a grant from the Research Council of Norway to continue his studies.
Molaug brought his robot idea up for Nils Underhaug and were challenged to come up with specific plans for a spray painting robot. Ole studied the spray painting methods at Trallfa and on July 1, 1964, he presented a paper outlining his idea accompanied by a simple sketch, estimating the cost to USD 1500 – 2000. Nils Underhaug gave Ole Molaug the go ahead.
Molaug took charge of the electronics and tool maker Sverre Bergene from Trallfa was entrusted with solving the mechanical and hydraulic challenges. They worked at night and into the small hours, while doing their ordinary work during the day. Even though colleagues began to gossip about “those expensive toys”, they never lost faith.
In the summer of 1966, the robot had progressed far enough to be introduced at the Trallfa stand of the local exhibition “Jærdagen”. There it executed profile drawings, and crowds gathered to see this strange contraption performing.
So far so good, but would it really work? The opportunity came in February, 1967, when the robot had a trial run at the conveyor in the factory’s paint shop. Nils Underhaug had the honor of pressing the button to start the robot. Start it did, and painted wheelbarrow boxes passing along the conveyor – one after the other. The results were excellent.

trallfa spray paint robot 0 x640 1965 7   Trallfa spray paint robot    Ole Molaug and Sverre Bergene (Norweigan)
To make a long story short, Trallfa decided to go into production with its robot. In 1969 the first industrial spray painting robot were delivered to Sweden for bath tub enameling. The company established itself early as the leading supplier of robots for spray painting applications, as it still is today in ABB.


trallfa robot history 1 x640 1965 7   Trallfa spray paint robot    Ole Molaug and Sverre Bergene (Norweigan)

Also, Ccontributed greatly on the electronics side.

trallfa robot history 2 x640 1965 7   Trallfa spray paint robot    Ole Molaug and Sverre Bergene (Norweigan)

trallfa prod 2 x640 1965 7   Trallfa spray paint robot    Ole Molaug and Sverre Bergene (Norweigan)

trallfa prod x640 1965 7   Trallfa spray paint robot    Ole Molaug and Sverre Bergene (Norweigan)

trallfa hydraulic robot x640 1965 7   Trallfa spray paint robot    Ole Molaug and Sverre Bergene (Norweigan)

devilbiss trallfa 70s 1 x640 1965 7   Trallfa spray paint robot    Ole Molaug and Sverre Bergene (Norweigan)

The above images from Tormod Henne, December 2009 book on the history of ABB robots.


Ole Molaug robot 1 1965 7   Trallfa spray paint robot    Ole Molaug and Sverre Bergene (Norweigan)

Ole Molaug