Posts Tagged ‘1962’

1962-65 – Deepstar 4000 Diving Saucer – Jacques-Yves Cousteau / Westinghouse (French/American)

deepstar-pmaug1963-x640

Image source: Popular Mechanics, August 1963.

1962 – Deepstar 4000 Diving Saucer – Jacques-Yves Cousteau / Westinghouse launched in 1965.

1962-westinghouse-deep-sea-press-x640

26 Jun 1962-NEW YORK: William E. Knox, president of Westinghouse International, demonstrates the flexibility of a remote control arm, part of a unique deep-sea vehicle at a 6/26(/62) press conference. The new  self-propelled vehicle, to be named "Deepstar," which will be built by Westinghouse Electric, will give a three man crew the maneuverability needed to explore the "last frontier on earth." A cutaway drawing of the vehicle appears in the background.


128605304-deep-star-4000-gettyimages-x640

Manipulator arm is folded away.

ds-4000-bushby-arm-x640

Source: Undersea Studies With The Deep Research Vehicle Deepstar-4000, March 1969

Manipulator and Bottom Sampling Devices
A single mechanical arm (Figure 61) with only three degrees of freedom can be installed in about three hours on DEEPSTAR. This arm weighs 15 pounds, has a maximum reach of 42 inches and can lift about 35 pounds. In most cases, due to the limited dexterity of the arm, the vehicle is manoeuvred in conjunction with the arm  to obtain a sample. A basket, which can extend from the port side of the vehicle, is used to store samples. At the outward end of the arm is an orange peel sampler. Experience showed that the sampler's fingers were often bent and forced out of alignment. A more rugged arm with increased dexterity would be far more effective and a variety of  hands or end samplers is also desirable.

ds-4000-manipulator-ocean-3-x640

deepstar-4000-bushby-4-x640

deepstar-4000-bushby-76-x640

deepstar-4000-ru-x640

deepstar-4000-x640

ds-4000-hnsa-x640

deepstr2-x640


deepstar-psoct62-1-x640

Image source and for in-depth article see Popular Science, October 1962.

deepstar-psoct62-3-x640

deepstar-psoct62-x640


ds-4000-claw-bushby-1-x640

ds-4000-cutaway-bushby-1-x640

ds-4000-cutaway-ocean-1-x640

ds-4000-hnsa-2-x640

ds-4000-w-claw-x640


sp4000-roux-4-x640

Initially the S.P. 4000, it was built in collaboration with Westinghouse and became the D.S. 4000, or Deepstar 4000.

Cousteau's futuristic designs were done by his long time friend, Jean Charles Roux. The above illustration being for the S.P. 4000 maquette in Expo 67, Montreal.

j-c-roux-expo-67-2

Expo '67, Montreal.

Image source: here

sp4000-roux-5-x640

sp4000-roux-6-x640


Tyrone_Daily_Herald_Fri__Jul_14__1967_ - Copy-x640

Source: Tyrone Daily Herald, Jul 14, 1967.


Related Patents:

cousteau-nav-patent-x640   

Method of navigation for a submarine boat

This patent not so much describes Deepstar 4000 per se, but includes description on manoeuvring the vehicle that also effect the positioning of the manipulator arm. Further, the drawings includes a diagram of Deepstar 4000.

Publication number    US3169500 A
Publication type    Grant
Publication date    Feb 16, 1965
Filing date    Jul 13, 1962
Priority date    Jul 21, 1961
Inventors    Gagnan Emile, Alinat Jean, Cousteau Jacques Yves
Original Assignee    Spirotechnique

LLoyd-manip-arm-pat-1-x640
Manipulator apparatus

Publication number    US3400541 A
Publication type    Grant
Publication date    Sep 10, 1968
Filing date    Nov 23, 1966
Priority date    Nov 23, 1966
Also published as    DE1531286A1
Inventors    Lloyd Wayne B, Schlissler Earl R
Original Assignee    Westinghouse Electric Corp

Description
ABSTRACT OF THE DISCLOSURE
Manipulator apparatus for use on undersea vehicles. An exterior-mounted multi-joint manipulator arm has a respective hydraulic actuator and electro-hydraulic flow control valve at each arm joint. Common hydraulic supply and return lines connect the several control valve to a sea-ambient pressure-compensated hydraulic supply-return system. Current regulating means at an operators station provides for operation of the control valves, and means are included for equalizing all hydraulic volumes within the system at sea-ambient-compensated pressures during de-activation of the apparatus.

Powered manipulators mounted on the exterior of the hull of space and undersea vehicles are employed for grasping and manipulating objects at the exterior under the control of an operator inside who has visual contact with the manipulator and the object to be grasped or manipulated. A typical manipulator to which the present invention relates is generally a simplified mechanical simulation of a human arm and includes the grasping means, mechanical arm sections, and pivot joints, corresponding grossly to wrist, elbow and shoulder joints. Power actuators, commonly hydraulic rotary actuators, are affiliated with the several pivot joints of the manipulator and the operator inside the hull in observance of such manipulator through such as a window in the hull, controls operation of the several rotary actuators to dictate movements of the manipulator to obtain operation of the mechanical hand. The ease and rapidity with which the task of controlling operation of the manipulator is accomplished is greatly affected by the type of control system provided for the several actuators embodied in such manipulator.

Presently, the most common control means for each of the several actuators is a three-position control valve with upon, the operator must initiate the rate of motion by operating the proper control valve in the proper direction, visually monitor the effect the valve operation is having on manipulator position and then consciously terminate the movement by suitable valve operation. With employment of such on-otf valve control, the result has been a fixed rate of speed of operation of a particular actuator, hence, particular rate of joint movement. The problem arising with fixed rate control is that a compromise must be reached between high speed operation of a given actuator (open for rapid slewing through wide angles) and low speed for fine control near the object to be grasped. As a result of this compromise, both rapid slewing and fine control are sacrificed in such conventional fixed-rate manipulator systems. This results in lost time in doing work with such a manipulator and increases the possibility of damage to the object to be grasped, or of damage to the manipulator.

Such conventional manipulators as employ on-off control valves mount such valves at a fixed location relative to the hull of the craft and remote from the actuators at the arms of the manipulator, and require an undue multiplicity of hydraulic lines of considerable length extending between the control valves and the actuators on the manipulator joints; two separate hydraulic lines being required for operation of each of the actuators so controlled by on-off selector valves. Such long lines tend to establish low resonant frequency conditions which introduce lags in response of the actuators to dictates of the control valves as well as pose a problem of suitable protection for all such lines during operation.

The on-off selector valves are usually of the poppet valve type which tends to introduce random and erratic high creep rates of the mnaipulator joints due to leak-by at the poppet valves which tend to become slightly unseated by particles of dirt which can accumulate on the seat.

Because of employment of such multiplicity of separate hydraulic lines between respective on-off selector valve devices and the actuators they control, these lines and actuator chambers to which they are connected tend to establish entrapped volumes of hydraulic fluid in lap position of the valves which can experience severe pressure changes at their exterior during ascent or descent of an undersea vehicle, which can cause implosion or explosion of hydraulic components as a result thereof.

In view of the foregoing remarks it is the prime object of the present invention to eliminate the above problems, either separately or collectively, i.e., to provide for adjusting the rate of operation of the manipulator joint actuators, to reduce the number of hydraulic lines employed for operation of the several actuators, to overcome the problem of implosion or explosion of hydraulic components during ascent or descent to and from great depths, to employ a control valve system which greatly reduces the tendency for leak-by within the valve responsible for creep of the actuators and manipulator joints, and to provide a simplification in construction and an increase in reliability and dexterity in performance of the system.

In general, the above object is obtained in the present invention by the provision of a manipulator apparatus which, in addition to the usual actuators mounted on the manipulator arm joints, also includes respective variable rate electro-hydraulic servo valves mounted directly on the manipulator arm sections. The servo valves have only two hydraulic lines common to all of such valves and which extend therefrom to a hydraulic power supply system located externally of the hull of the craft on which the manipulator is mounted; each servo valve being constructed to minimize leakage between the hydraulic lines to the actuator as well as to provide for establishing interconnection between all hydraulic ports, passages, lines, etc., in the actuator system, including the hydraulic power supply, whereby internal hydraulic pressure becomes equalized with the environmental pressure of the system by way of ambient-pressure-compensated hydraulic supply system. Operators control means disposed within the hull of the craft provides for electrical control of operation of the variable-rate electro-hydraulic servo valves by way of electrical lines passing through the hull of such craft.

LLoyd-manip-arm-pat-2-x640

Manipulator apparatus

Publication number    US3422965 A
Publication type    Grant
Publication date    Jan 21, 1969
Filing date    Feb 13, 1967
Priority date    Feb 13, 1967
Inventors    Lloyd Wayne B
Original Assignee    Westinghouse Electric Corp

Description
ABSTRACT OF THE DISCLOSURE A master-slave manipulator apparatus useful on undersea vehicles in which a master arm inside the hull is actuable by an operator to effect corresponding movement of an exterior slave arm, without requiring control feedback from the slave arm, comprising multiple-pivot slave,
and master arms with hydraulic rotary actuators on the slave arm joints, an open-loop control system including electro-hydraulic flow-control servo valve devices on the slave arm for controlling rate of supply of hydraulic fluid to the actuators respectively, and means for producing respective control signals for the servo valves on the slave arm according to the angular velocity and acceleration between relatively movable parts of the master arm at each of its joints, the angular positions of such master arm parts with respect to a common reference, and the relationship between such conditions which affect gravity and inertia torque loads on the respective actuators of the slave arm.

The present invention relates to manipulator apparatus.

Background of the invention 1) The invention relates to hydraulically-operated master-slave manipulator arm apparatus suited for use on undersea vehicles.

(2) Previous attempts have been made to use the master-slave method of control to improve manipulator agility. At least one of these, having both position and force feedback, is almost unbelievably agile, but its master arms are bulky, the system is very complex and the mean time before failure tends to be short.

The conventional approach to master-slave control is by use of a closed position servo loop through use of a position pick-off mounted on each joint of the slave arm and used in conjunction with a companion pickoff on the control arm. This type of position slaving has the disadvantages of position pickotfs operating in the hostile environment and of many additional wires (from the pickoffs) passing through the pressure hull. Another disadvantage given for prior art master-slave manipulators with position feed-back is the snap-in effect, which is the alignment transient which can occur when the system is first turned on with an initial misalignment between the position of the master and slave arms.

In the case of undersea applications, the disadvantages mentioned above, along with that of higher cost, have largely prevented the use of master-slave manipulators.

Summary In view of the foregoing remarks, the present invention provides a master-slave manipulator apparatus which preserves the agility and maneuverability of this type of apparatus, but which overcomes the above objections to previous forms of such type by use of an open-loop control system which takes into consideration relationships at the master arm which affect gravity and inertia torque conditions of the slave arm.

Hackmann-pat-westinghouse-x640
Manipulator apparatus

Publication number    US3589134 A
Publication type    Grant
Publication date    Jun 29, 1971
Filing date    Oct 30, 1969
Priority date    Oct 30, 1969
Inventors    Hackmann Robert L, Hunt Donald W
Original Assignee    Westinghouse Electric Corp

MANIPULATOR APPARATUS BACKGROUND OF THE INVENTION
1. Field of the Invention Manipulator arm assemblies and controls therefor.

2. Description of the Prior Art
Mechanical arms, sometimes referred to as manipulators, are very often used when a particular environment is too hostile or dangerous for a man's direct participation. The manipulators provide an extension of the human arm capability in addition to motions and capabilities not performable by a human.

A typical manipulator includes two or three pivotal arm sections the last of which carries a tool, cleaning brush, or some other terminal device such as a gripping mechanism, for performing a certain task. The terminal device is visually observed by an operator by means of direct observation or by a television system. In moving the terminal device to a desired location the operator uses a model of the manipulator served to the actual manipulator, or a puppet arrangement where control cables attached to the operators arm move the manipulator in a corresponding manner to the arm; these types of controls can be very fatiguing to the operator and in addition where response times are relatively slow the operator must make a move and then wait to see the response of the manipulator assembly and thereafter take any necessary corrective action. This move and wait technique greatly extends the time required to perform a given task. In a manipulator having three pivots and three arm sections if it is desired to move the terminal device along a line it is necessary for the operator to command at least three different pivot actuators. An under or over command requires corrective action of one or more pivots and the relatively simple task of moving in a straight line becomes an extremely complicated procedure.

It is therefore a primary object of the present invention to provide a control system for a manipulator apparatus which relieves the operator of cumbersome and detailed manual control for various desired line movements.

SUMMARY OF THE INVENTION A control system for manipulator assembly is provided which includes a plurality of actuators which in response to an input signal pivotally move the arm sections of the manipulator relative to one another. One of the actuators is commanded to move one of the arm sections and a positional orientation of the commanded arm section is sensed and the remaining actuators are provided with input signals to command them as a function of the positional orientation of the first arm section.
opdahl-pat-westinhouse-x640
Manipulator arm

Publication number    US3610438 A
Publication type    Grant
Publication date    Oct 5, 1971
Filing date    Mar 16, 1970
Priority date    Mar 16, 1970
Also published as    DE2112066A1
Inventors    Opdahl Everett W
Original Assignee    Westinghouse Electric Corp

Description
ABSTRACT: A manipulator arm is exemplified which employs externally at its joint a pair of parallel actuator links extending longitudinally between pivotal connections on adjacent rounded arm section ends that are coupled together for rolling motion of one of such ends on the other. Rotary actuation of the links about the pivotal connection on one arm section causes a greater rotary movement of the other  section about such connection. Control and/or actuator lines extend longitudinally inside the arm; interconnected at the arm section joints via flexible sections snaked between the actuating links for constant length at all angular joint positions.

MANIPULATOR ARM
BACKGROUND OF THE INVENTION
1. Field of the Invention
Manipulator arms suited for use on undersea vehicles.

2. Description of the Prior Art
It is common practice in manipulator arm constructions for undersea use to employ a fork fitting or offset hinge at the arm section joints. In either case, it is difficult to pass control and/or actuator lines through the joints. If the lines are run externally, they are susceptible to damage or snagging unless shrouded, which is difficult to achieve.

In order to obtain joint motions in excess of 90deg, rotary type hydraulic actuators have been employed, which are located directly at the pivot axes of the joints. This type of actuator installation also inhibits the passage of control and/or actuator lines therethrough.

Arm joint constructions which permit one arm section to fold back against another, heretofore have been difficult if not impossible to attain. A result has been that the degree of compaction of the arms during stowage has been undesirably limited, hence the arm storage demanded has been greater than desirable.

In certain existing arm joint constructions, actuators become exposed and/or protrude when the arm assumes a folded position. This makes them susceptible to damage when stowed externally of the vehicle and/or increases stowage volume requirements.

Still further, certain existing arm joint constructions result in inefficient use of their structural components, hence tend to contribute to increased weight due to larger size required to compensate for the inefficiency.

For light duty manipulators, it is desirable to locate the actuators at the shoulder arm section rather than at the joint being driven, since this reduces the parasitic weight which the arm must lift during its operation. It is difficult to provide for such remote actuation of the joints in previous arm constructions.

SUMMARY OF THE INVENTION The present invention, in providing a manipulator arm construction in which the ends of arm sections at the joints are caused to roll about the ends of adjacent arm sections by angular movement of one end of pairs of actuator links disposed at opposite sides of the exterior of such arm, opportunity is afforded for readily overcoming the limitations of the prior art set forth in the preceding description of such prior art.

The externally situated actuator links, being pivotally connected at one end to one arm section and at its other end to the adjacent arm section affords longitudinal space between the two pivot locations to accommodate extension of S-shaped flexible control and/or actuator line sections that transfers itself by bending progressively onto one or the other arm section end without changing length during angular movement at the arm joints in one direction or the other. With the actuator links being disposed along the exterior of the arms at the joints, disposition of such lines within their protective confines is afforded.

By virtue of the rolling motion of one arm section end over the end of the adjacent arm section, angulation of the one section relative to the other to the extent of 180deg for foldback is readily obtainable, and by virtue of obtaining such rolling motion by the turning of one end of the respective actuator link pair to obtain a multiplication of the resultant arm section movement, efficient use of rotary input motion is obtained.

By virtue of longitudinal separation between the input axis about which the rotary input motion occurs and the axis on which the actuated arm section turns, considerable choice of input motion actuator is afforded, including a hydraulic rotary actuator coaxial with such input axis, a local reciprocating piston actuator crank-arm-connected at such input axis, a remote actuator connected via cables in the arm to crank arms at such input axis, etc.


See Cousteau's earlier SP-350 here.

See other early Underwater Robots here.


1958-62 – “Beetle” Mobile Manipulator – G.E. Corp. (American)

beetle-ps-8-x640

1958-62 – "Beetle" Mobile Manipulator.


Background Information:

remote-manipulator-pm-sep56-x640

Popular Mechanic's (Sep 1956) drawing made by Frank Tinsley from designs by Lee A. Ohlinger of Northrop Aviation, Inc. of a robot mechanic for the proposed atomic-powered airplane, a star-crossed project that stumbled through 10 years and $500,000 without ever getting off the ground.

remote-manip-us3043488-pat-x640

General Mills was one company that patented a 'Vehicle-Mounted Manipulator' in 1958 as its proposal for atomic-powered aircraft maintenance, amongst other purposes.

Publication number US3043448 A
Publication date Jul 10, 1962
Filing date Sep 19, 1958
Inventors Melton Donald F
Original Assignee Gen Mills Inc


Beetle-announce-x640

Source: Missiles and Rockets, Volume 9, 1961

Robots-EIJul61_model-x640

Beetle-model-x640

In 1961, GE's Beetle was under construction. The above few pictures show the model that was built beforehand.


beetle-ps-4-x640

World's Biggest Robot By Martin Mann
Fix an atomic rocket engine? Clean up spills of radioactivity? Rescue H-bomb victims? That's what the Beetle is for
 
THAT monster glaring at you from the left is the biggest robot ever made. It weighs 170,000 pounds in its double-thick rubber treads. It can punch its claw hand through a concrete wall or gently stretch stainless-steel arms to pluck an egg off the top of a house. 
There's a man inside. Safe within the lead-and-steel cab, he can work where no unarmored man could live -in the deadly radiation that atomic energy the most fearsome as well as the most promising invention of the century.    
He could roll right up to the atomic engine of a space rocket and delicately maneuvering those 16-foot arms, make adjustments. Or he could replace a broken part in the atomic boiler of a power plant. Or haul the fatally hot debris of a nuclear accident away to the burying ground. If H-bombs struck he could dash into the destruction zone to rescue injured people and scrape away the worst of the fallout dust. 
That's what this bizarre machine, named the Beetle, can do. When PS Chief Photographer Bill Morris and I first saw the Beetle, it wasn't doing anything but sitting on a hangar floor. They couldn't start the engine.

Beetle is first of a family of robots that will handle the hot jobs of the atomic age

beetle-ps-7-x640

Robot with a bellyache. In four days it operated seldom, and then it limped more than ran. There was difficulty with the degassing circuit. A plug popped and hydraulic fluid squirted out (a dedicated engineer, Dutch-boy-like, stuck his finger in the hole). A diode blew, immobilizing one arm (a welder had dropped a tool into the control chassis). The auxiliary generator pooped out (brush trouble). It seemed that short circuits had their own short circuits (after all, there are 400 miles of wiring in the thing).
Such bugs are standard equipment in any complex new machine. They were cleaned up in a furious week of round- the-clock troubleshooting. But these setbacks were only the culmination of troubles that dogged the Beetle from the beginning. It was originally designed to be a robot mechanic for the atomic-powered airplane, a star-crossed project that stumbled through 10 years and $500,000 without ever getting off the ground. So the Beetle is an orphan. The Air Force, which paid $1,500,000 for it, still isn't sure exactly what it will be used for. Yet the need for machines of this type is so certain that the orphan is already fathering a whole family of newer robots. The next models, now on the drafting boards, will bear only a family resemblance to Papa Beetle. They'll be smaller and lighter, so they can be air-lifted where needed. Most will be remote-controlled–without a man inside you don't need all that heavy radiation shielding.  
The Beetle does carry a man. That makes it more versatile. But it also requires some of the most elaborate engineering ever lavished on any ground vehicle.

beetle-ps-2-x640
It looks like a tank because the chassis is reworked from an Army M42 40-mm. gun carrier. A 500-hp supercharged Continental six speeds it along roads at 10 m.p.h., but there's also an electrical drive by which it creeps 15 feet per minute. It could wrench the concrete all off a test cell without grunting hard–drawbar pull is 85,000 pounds.
The cab, however, is nothing like a tank turret. It not only turns around and around, but moves up and down 15 feet on four stainless-steel legs (built like hydraulic auto lifts). These movements are precise but slow, for that cab weighs 50 tons.
The walls are made of foot-thick lead covered inside and out with half inch steel plates. The entrance hatch is a tight-fitting cork of lead directly over the operator's head. It alone weighs 7 1/2 tons.  
The hatch offers the only way in or out.

beetle-ps-5-x640
Understandably, there are four separate mechanisms for raising it: the regular hydraulic system, the battery-powered hydraulic pump, a hand pump on the operator's left armrest, and hand pump outside the cab.
Even with the four independent emergency outs, the operators seat is still no place for a guy with claustrophobia. It's eerily  oppressive even when the hatch is wide open (I tried it). Those 50 tons of lead and steel form the most effective suit of armor ever wrapped around a single man. It cuts down atomic rays by 3,000 times. That means the operator could put in a full day's work where the radiation level was 3,000 roentgens per hour. Unshielded  exposure to such intense radiation would  probably kill him after 10 minutes.  
The man who will seal himself inside this massive machine is young, flamboyant Randall Scraper, who comes from Indiana, but is always called Tex. Scrapper is one of the most skilful of an elite corps of technicians, the professional manipulators.

These specialists perform the same work as any repairman–taking machines apart and putting them back together again. But there is one big difference: The manipulators work on machines too "hot" to get close to. They cannot touch their work or even their tools. Everything must be done at long range with mechanical arms.

No sense-no feeling. The arm is a stainless-steel boned, electrically muscled copy of human equipment: shoulder, upper arm, elbow, forearm, wrist, and hand. The joints are superhuman: They spin around and around as well as bend. The hand is usually a two-fingered claw that can grasp and manoeuver parts or tools: but it can be snapped off and replaced by any of any specialized types–a socket-tipped finger, for instance.

The steel hand cannot feel, however, and that is a serious loss.You can't tell whether you are crushing something or holding it too loosley it will fall. (Dropping a nut or screw seldom matters: spilling a can of radioactive material could tie things up for weeks.)

Working with mechanical arrms is like playing the nickel-in-the-slot claw machine at an amusement park–and snaring the toy compass every time. It takes unusually sensitive coordination as well as icily calm concentrating–outwardly at least. Tex Scraper steadily chews gum and cigars, often both at once. But he possesses the supreme patience to devote eight hours to removing one nut from a bolt.

"I can do that,: Scraper drawls. "because I turn my ears off. People are always watching, trying to help. 'A little to the right,' they tell me. Well, it may be their right and my left. So I've taught myself to pay no mind. I don't even hear them."

The Beetle is worth its cost solely to take Scraper and his mechanical arms up close to the hot nuts and bolts. He gets safety and a clear view of the work (not perfect, yet better than television). But he pays for these advantages with total isolation.

The operator is sealed tight a mummy. There is barely space to wiggle a foot; standing or stretching is out of the question. His only direct connection to the outside world is an air intake.  
(The duct zigzags, like the entrance to a photographic darkroom so that radiation cannot "shine" in. Special filters are unnecessary because the air itself does not become radioactive.)    
A three-ton air conditioner keeps Scraper cosy (72 to 76 degrees, 60-percent humidity) even if the temperature outside plummets to 25 below or flames to 130 above zero. He talks to base by radio (two separate transmitter-receivers) or public-address system.    
There's even a microphone out front so that he can listen to the engine.

beetle-ps-1-x640
A room with a view. Even more elaborate are the arrangements for looking out.
To go with the windows, there are two pairs of binoculars on swinging mounts; with them Scraper can read the scale of a standard micrometer gauging parts many feet distance.
There is a retracting, submarine-style periscope that rotates and tilts.
Finally there is closed-circuit TV. The screen sits between his legs. One camera is clipped to the cab, like a pencil in a man's breast pocket. It can be picked up and moved around by the mechanical arms. Two fixed cameras point to the rear so that Scraper can see what's going on behind him–outside rear-view mirrors are impractical.
The Beetle's cab even includes a few luxury accessories: a comfortable, power adjusted chair, ash tray, lighter. Most important of all, perhaps, is an oxygen bottle. If absolutely everything went wrong, it could sustain Scraper for eight hours. Presumably that would give time to haul the machine out of danger, cut the cab open, and free him.

Source: Popular Science, May 1962.


robot-archive-beetle-x640

Built by Jered Industries in Detroit for General Electric's Nuclear Materials and Propulsion Operation division, the Beetle was designed for the Air Force Special Weapons Centre, initially to service and maintain a planned fleet of atomic-powered Air Force bombers. According to declassified Air Force reports, work began on the 'Beetle' in 1959, and it was completed in 1961.

It has also been said [Halacy, "The Robots Are Here!", 1965] that the Beetle was built for NASA's "Project Rover", a nuclear rocket development program.


 Life Magazine, 4 May 1962 had a brief article and a couple of pictures of the Beetle.

tele-manipulator-x640

Beetle showing its versitility by putting an egg on a spoon. Not bad given the size and types of grippers, and lack of tactile feedback to the operator.

USAF-beetle-robot-x640

A startled look as the Beetle is spotted in the make-up mirror.

1961-ge-beetle-press-1-x640

beetle-kennedy-press-1 - Copy-x640

President Kennedy (back to camera) having a look.

hjbeetle2 - Copy-x640

beetle-modestobee22feb1962-x640

beetle_0012 - Copy-x640

Beetle-a-_0006-x640

beetle-remote-manipulator-pic - Copy-x640


The Beetles' Arms and Hands

Beetle-arm-GM-pat-2-x640

The General Mills arm used in the Beetle is very similar to this arm descibed by patent US3247978. Karl Neumeier was one of General Mills engineers.

Beetle-Gripper-GM-pat-1-x640

The two-fingered hand is also described in the patent and is most likely the same if not very similar to that used on the Beetle's manipulator arms.

beetle-manipulator-hand-x640

par-hook-hand-beetle-x640

General Mills Hook-and-anvil hand. {Image says PaR Systems, which was a spin-off from General Mills]

 

beetle-life-14-General-Mills-x640

The General Mills logo on the manipulator arm.

beetle-remote-manipulator-diag-x640

beetle-remote-manipulator-dimensions-x640

beetle09-x640

hotSoup13-x640

hotSoup21-x640

hotSoup22-x640

PaR-m550-diag2-x640

PaR-m550-diag3-x640

PaR-m550-diag-x640

PaR-m550-pic-x640


18nj0o4hj5ly4jpg-x640


In the Life Magazine article mentioned above, Getty-LIFE have a lot of images from that photo shoot. They appear in the photo gallery below.

Invalid Displayed Gallery


See other early Teleoperators and Industrial Robots here.


1962 – Manned Auxillary Fitter Craft with Mandible (Concept) – Sperry Gyroscope Company (American)

1962 – Manned Auxillary Fitter Craft with Mandible. Not the name the vehicle was called in the original Sperry Gyroscope Company advertisement when it appeared in the February, 1962 issue of  Scientific American Magazine.

The shape is somewhat reminiscient of Wernher von Braun's "Bottle Suit", with manourvering engines top and bottom, but only one pair of manipulator arms.

The image is more famous in being copied by the Soviet Union and re-issed by the TASS agency in 1969 as if it were their own space station development. The first space station ever was Salyut 1, which was launched by the Soviet Union on April 19, 1971. Like all the early space stations, it was "monolithic", intended to be constructed and launched in one piece, and then manned by a crew later. The wheel shape had been dropped by all by this time.

10/11/69-MOSCOW: The Soviet Union hurled a "flying machine shop" carrying two cosmonauts into earth orbit 10/11. Reliable sources said it would be followed soon by one or two more manned craft and that crews would eperiment in the construction of an orbital space station. This Soviet sketch shows a future Soviet space station which will be used to assemble and launch interplanetary ships. The sketch shows portion of space station (BTM), a spaceship under construction (UR) and a one-man construction craft (UL). TASS PHOTO


Source: Lodi News-Sentinel, October 25, 1969.

Source: Life Magazine, Nov 14, 1969.

Source: February, 1962 issue of  Scientific American Magazine.

Source: New York Times, 13 Oct 1969.


See other early Space Teleoperators here.

See other early Lunar and Space Robots here.


1962 – Nonanthropomorphic Space Suit (Concept) – Douglas Aircraft Corp (American)

For Douglas Aircraft, in 1962,  their earlier space manipulator designs, i.e., the Project Mercury converted capsule and the "Humpty Dumpty" unit, can be considered as first-generation, feasible, nonanthropomorphic devices. A much more speculative concept, but in every sense within our technological reach, is shown in figure 3 above. This is basically a space tug and repair vehicle and is spheroidally shaped. Viewing this figure, we see:
a. The control console will release doors on mechanical arms and legs, select various extensions, select self-viewing TV cameras, select receivers (communications), and regulate gyro control.
b. The 3-D helmet is a contained electronic unit and inside is a dot-type screen instead of the usual cathrode-ray tube. The image surface is hemispheroidal to reproduce real optical effects. The hemisphere would fit on the face over each eye to achieve stereoscopic effects. As the observer rotates his head he picks up the next camera transmission – not as a separate picture but as a continuously integrated picture. In actual use, the helmet could be reduced to a much smaller head set.
c. Expanding arms use servomotors with variable current control. They are run by operational gloves.
d. When the operator is positioned in the attitude seat, he has a complete attitude control of the sphere as he has of his own body.
e. Television cameras are placed on the main periphery of the globe.
f. Jet stabilizers are located between the cameras.

Source: "Survey of Remote Handling in Space", D. Frederick Baker,  USAF, 1962


See other early Teleoperators here.

See other early Lunar and Space Robots here.


1962 – Table-Clearing Robot – Meredith Thring (Australian/British)

"Working model of a table-clearing robot [Mk 2] designed to test the present-day feasibility of principles required for the house-working robot and other machines. The model has one 'sight' and two 'touch' sensors which enable the mechanical arm to pick up objects and place them on the rotating, clearing tray on top of the machine."

INVENTORS' EXHIBITION

2065.27 | INVENTORS' EXHIBITION. London 13/01/1969

M/S table clearing robot. M/S as it lifts cup up from table. C/U cup being lifted from table and placed to one side. M/S as cup swings round to make room for another.


THE HOUSE-PROUD ROBOT
Clearing the table after a meal is a task which can be given to a robot. This one, like many other robots, does not have a human form like its counterparts in fiction. But it does its job well.


1. The mug is seen by a photoelectric "eye" and the "hand" is directed towards it.
2. Controlled by pressure sensors, the hand grips the mug firmly.
3. As the hand retracts, it puts the mug on a rotating turntable.


4. By its rotation, the turntable clears the mug out of the way. Far right: a close-up of the robot housemaid in action.


This table-clearing machine has a photoelectric eye which detects objects. This directs linkage; closes on them
lifts them back to the turntable.




Earlier Mk 1 version of Table-clearing Robot


Meredith Thring with his models of Domestic Robot

Cartoon from New Scientist, March 1963.


See other early Domestic Service Robots here.