1954 – “Sylvania Sam” Promotional Robot – (American)

sylvania-sam-advert-robots-50s -x640

1954 – "Sylvania Sam" Promotional Robot.

sylvania-sam-San_Bernardino_County_Jan_27_1955-x640

The "Sylvania Sam" Promotional Robot was a 9-foot tall talking "electronic" robot that tells you all about pink "Softlight" bulbs.

sylvania-sam-New_Castle_News_Nov_22_1954-x640


See other early Humanoid Robots here.


1957 – “Mr. Fantastic” Robot – Andy Frain Jr. (American)

1957-mr-Fantastic-robot-usher-Andy-Frain-Jr-x640

1957 – "Mr. Fantastic" Ushering Robot by Andy Frain Jr..

A tape recorder replays the ushering commentary via a speaker in 'his' chest. 'His' right toe has a sensor that counts the passing crowd.

1957-andy-frain-jr-robot-x640

An interesting anecdote about Andy Frain, Jr.

Source: The San Bernardino County, May 21 1954.

Runs $1 Million Firm
His Pay: $15 a Week
Chicago (UP) – Andy Frain, Jr., 20, who is running the family's million-dollar ushering business during his father's illness, makes more money at it than rumored.
Asked to comment on reports his allowance was only $10 a week he replied: "Actually, it's about $15."


See other early Pseudo and Fake Robots here.

See other early Humanoid Robots here.


1971 – Model 2004 Maze-Solving Computer – Richard Browne (American)

Browne-Maze-Solver-1971-p1-x640

Source: Xenia Daily Gazette Mon, May 24, 1971

Computerized mouse maze first of 3 long-term projects for Xenian.

by Ward Pimley – Gazette staff writer

To a research psychologist, running a mouse through a maze to investigate behavior patterns is a common occurrence. But to an electronic engineering drawing specialist who wants to simulate the test, various alterations must be made.
Richard Browne, a drawing specialist in his seventh year with Systems Research Laboratories, Inc. (SRL), has recently finished a lengthy project designed to propel a wooden mouse through a maze with directions being supplied by a computer. He resides at 2004 Tahoe Dr.
COMMONLY, referred to as cybernetics, the system constructed by Browne uses a computer attachment which receives data from the mouse as to its location and the presence or absence of barriers, The computer then tells the mouse which direction to move based upon the data. While the mouse is searching for its "cheese," a metal block which short circuits the electric charge upon contact, the computer is storing in its "memory" information pertaining to the maze; that is, where the alley blocks are and what routes are beneficial to the mouse's search for the goal.
CYBERNETICS is a branch of science which mechanically and electronically attempts to reproduce the human thinking process into machines. Browne's computer, designed to comply with this principle, is programmed to receive information from the mouse, "analyze" the situation, then direct the mouse on its journey. The mouse, one-inch creature carved from balsa wood, has two copper whiskers which signal the computer when the mouse has bumped into a maze barrier.
Directional information is then sent back to the mouse whereupon an electromagnet beneath the aluminum maze moves the mouse in the direction indicated. The electromagnet is driven by two one tenth horsepower engines which control both north-south and east-west movements of the mouse.
THE COMPUTER, 600 pounds of wires and relays, has the capability of processing both partial and total accumulations of "knowledge." The partial knowledge refers to the store of information regarding the squares in which the mouse has investigated, while the total accumulation is the computer's memory of the correct path the mouse should take to solve the maze. After the mouse has found the goal, it may be placed anywhere along the proper path and it will move directly to the goal without either making detours or bumping into alley walls. There is an exploration strategy which the mouse follows, Browne explained, every time it enters a square. Five steps are involved, all occurring within one-tenth of a second. The procedure is repetitive and designed so that the mouse will examine all possible avenues of escape from a square. If the mouse should encounter a wall in one direction, it then turns 90 degrees clockwise. If there is no wall in that direction, the mouse will exit the square. Otherwise, it will turn again to check a new direction. There are 25 squares on the maze with removable walls for reshaping the maze. Browne, said there are 873 duodecillion/(873 followed by 12 zeroes) solvable maze patterns possible in his operation. Should the mouse solve one million maze patterns per second (clearly an impossible task), it would take the mouse 2.7 septillion (seven zeros) centuries to solve all possibilities, Browne said.
THE PROJECT took Browne 10 years to complete, working on and off, he said. The idea for the maze came from a May 1955 issue of Popular Mechanics where an article was printed about a man who had completed such a project. Browne decided to duplicate the feat, although he designed and constructed the computer by himself. While Browne built his unit with spare parts, he said that a computer and maze constructed from new parts (and including labor costs) would cost about $15,000. The present project is completed, Browne said, except for a couple of minor improvements to be made. One of these is to put wheels on the mouse to facilitate easier movements. The other is to replace the magnet in the mouse with a stronger one so that the mouse will not escape from the electromagnet's pull from under the table.

However, Browne is not quitting his dabbling with home made electronic projects. He presently has in mind two further projects to operate from the computer he has already built. One of these is a model railroad, which Browne estimates will take him 15 years to complete (working on and off of course). The other is an electromagnetic calculator which will perform complicated mathematics.

Man's creative urge, it seems, still lives in Richard Browne.


See other early Maze Solving Machines & Robots here.


 

1953 – Tobor the Robot – Dave Ballard (American)

LIFE-cpt-video-13sep54-x640

From the "Captain Video" TV serial, the "I, Tobor" episodes starting the week of November 2, 1953.

Tobor (played by 7' 6" Dave Ballard) was a prototype robot designed to be a tireless worker and indestructible soldier. It bore the inscription "I-TOBOR" (a reversed image of ROBOT-I) on its chest plate.

Tobor's body featured a cylindrical manlike form, rockets mounted on its back; an antenna sprouting skywards from each shoulder; a triangular flap of metal on its chest containing a lens which shot a death ray; and activation by voice commands via a pocket-sized device attuned to the vocal frequency of its controller. Tobor also had giant claw pincers as hands.

Tobor was originally designed as a force for good in the universe, until Atar, a villainous female reset the robot's voice circuits to obey only her commands. Now in control of the powerful robot, Atar set out to conquer the solar system.

Tobor was finally rendered harmless when Captain Video, matching Atar's vocal frequency, sent conflicting commands to Tobor and disrupted its circuitry.

Months later (due to popular demand) Tobor was reactivated but this time under the guidance of Captain Video's voice. A video monitor was built into his metallic naval for closed circuit communication.

In a later episode, an evil scientist stole Tobor's blueprints and created a duplicate Tobor. A colossal battle of good vs. evil ensued with Tobor fighting his evil twin.

Tobor the robot was prominently featured in serial episodes: "I, Tobor" (1953);  "The Return of Tobor the Robot (1954); and "Dr. Pauli's Planet" (1955).

Sources: TVAcres and Danefield.com/alpha.


The Merkin Marvel

merkin_robot-tobor-good-housekeeping-oct-55-x640

Image source: Good Housekeeping, Oct, 1955.

www.spaceagemuseum.com.merkin-NYT1955-x640

Image source: The Space Age Museum.


Dave Ballard – the actor giant.

Dave-Ballard-x640

Picture Source: The Tallest Man

Text Source: The Daily News, Huntington and Mount Union, PA. Monday December 21, 1953.

TV News by F. Glenn Westbrook.
In case anyone didn't know, there's a man inside the robot on the TV "Captain Video" series. He's a fellow called Dave Ballard, a 7-foot 8-inch giant. His trouble as a TV actor is that there aren't enough roles for giants.


Tobor Trivia:

  1. Its been said that Tobor is the first robot to appear in a TV series, beginning the week of November 2, 1953. It should be noted that the earlier robots from Captain Video were from a film serial, not TV.   To my knowledge, the Superman TV serial had the first robot – Adventures of Superman: Season 1, Episode 17, The Runaway Robot (9 Jan. 1953).
  2. Other forums suggest the reason why the robot is called Tobor is due to a stencil being cut on the wrong side, hence reversed in its application. As we haven't seen an image of Tobor with his name emblazoned on his chest, this cannot be confirmed yet.
  3. A different looking robot appeared in the earlier 1951 film serial Captain Video Master of the Stratosphere and first appeared in Chapter 3 "Captain Video's Peril".
  4. The 1954 movie "Tobor the Great" was a different robot as well.

Note: Mon Jan 18, 2016, Peter Milo contacted me:-

Hi. I ran across your article regarding Tobor from the Captain Video show. I remember the first episode quite vividly: The stencil was accidentally reversed when the name was painted. Hence: I TOBOR

I also had the good fortune of meeting the entire cast in person and got to see the actual filming of an episode at the DuMont studio  (my dad was a mounted cop in that area and had many friends along his beat).   Al Hodges was really a friendly individual, as was the rest of the crew. I left the studio that evening with a bunch of Powerhouse candy bars. LOL

Hi Peter,
Thanks for confirming the stencil story. Do you recall TOBOR as having large claws as hands? Cheers, Reuben Hoggett.

Hello, Reuben. Thanks again for creating such an informative sight. Tobor had large pincer claws, which greatly added to his overall menace. A model robot, which really didn’t resemble Tobor, was used for his space travel scenes. I remember my friends debating this anomaly; they finally chalked it up to poor photography in outer space.    The episode with the rock monsters was being telecast on the evening I visited the studio. I remember being quite surprised by the special effects (a couple technicians were lying on the floor, pulling ropes). When I glanced up at the monitor, it seemed that the large rocks were moving on their own. Really cool stuff.  Best Regards, Peter Milo.


See other early Humanoid Robots here.

See other early Pseudo and Fake Robots here.


1960 – Cycloidal Propulsion Omnidirectional Drive – Howard Hansen (American)

cycloidal-004-x640

CLARK'S experimental cycloidal machine. Two non-drive rear wheels counter torque.
Source: Mechanix Illustrated, April 1963.
CYCLOIDAL PROPULSION
A revolution in land vehicles may come from this new invention which can provide perfect maneuverability.
PUT a pencil at the top of a sheet of paper and start making loops—as if you were practicing a capital O, As you make the loops, draw your arm slowly down the page. Note the trail you are leaving—like a spring that's been stretched out, Actually, the curve you are drawing is called a "cycloid" and what you have just done is to trace the path of a new propulsion system that may revolutionize land vehicles,
What we're talking about is a wheeled or castered vehicle that is the ultimate in maneuverability. It can move in any horizontal direction without steering through a turning radius. In addition, it needs no brakes, transmission, axles or steering system, One control stick does the whole job.
Dubbed the Omni-Drive, it was developed by the Clark Equipment Co, Clark's first unit is an experimental battery-powered single-rotor job with two non-drive trailing wheels to counter torque. The production model—probably available next year—will have two rotors so that no torque reacting trail wheels will be necessary.
How does the Omni-Drive work?
The experimental rig consists of an under-carriage (rotor) on which three casters have been mounted 120 degrees apart, When the caster wheels are angled so that they merely revolve in a circle (see diagram at lower right) the Omni-Drive has no horizontal movement, This braking action is accomplished by centering the single control stick.
When the control stick is moved (in any direction desired) the caster wheels turn at an angle to the braking circle. Now, as the undercarriage continues to revolve, the wheels "swing out" and "push back" in cycloidal loops—just as your pencil did, The upper platform (which, of course, doesn't revolve) then moves—as your arm did when you drew the looping trail down the paper,
To visualize better the operation of this unique vehicle, keep in mind that the rotor never stops revolving while the Omni-Drive is in operation, But movement of the upper platform and operator take place only when the wheels are angled so they move outwardly away from the center as they traverse half of their circle, and inwardly toward the center as they traverse the other half of their circle,
Clark's production Omni-Drive—the two-rotor job—will be able to do much more than the experimental single-rotor rig, It will, for instance, be able to turn on its own axis, The single stick will control velocity, direction, thrust, braking and steering. Remember, this is a vehicle in which there is no torque transmission between engine and wheels. The engine—battery, gas, electric or whatever—merely turns the revolving undercarriage. Add to this the fact that this device brakes while the wheels are still turning and you begin to see its unique possibilities.
This amazing vehicle is the brainchild of Michael Chucta and Jerome Susag, Clark engineers, and Cmdr, Howard Hansen, USN, who developed the application of cycloidal propulsion to land vehicles while he was seeking to invent a maneuverable lawn mower!
Clark foresees wide applications of its Omni-Drive in materials handling vehicles. But in addition it is expected to find many uses in gantry cranes, missile handling machines and TV cameras.
—Larry Edwards

cycloidal-002-x640

CYCLOIDAL curve made by pen on paper—a continuous looping in a straight path.

cycloidal-003-x640

PROPOSED application in a single-rotor maneuverable machine for towing aircraft.

cycloidal-005-x640

BRAKING is accomplished when wheels describe perfect circle and vehicle stops.

cycloidal-006-x640

UNDERSIDE of working model. All linkages are connected to a single control stick.

cycloidal-MI-apr63-1-x640

cycloidal-MI-apr63-2-x640


Source: THE HILLSDALE DAILY NEWS, Monday, January 14, 1963
Vehicle Shows New Type Of Propulsion
DETROIT (AP) — A new type of land propulsion was to be demonstrated and discussed today at the opening of the 1963 convention of the Society of Automotive Engineers.
With it, you can drive a vehicle in any direction — even up and down, like a bird. It conceivably could some day give you an automobile you could edge into a parking place—sideways.
It is called "Cycloidal Land Propulsion" and it grew from a Navy officer's search for a power lawn mower he wouldn't have to haul and tug to mow around 40 trees on a place he'd rented in Falls Church, Va., in 1958.
It needs no brakes or clutch or transmission or axles.
. . .
The inventor is Cmdr. Howard C. Hansen, now commanding officer of the Navy's Patrol Squadron 49, and he told the engineers today how Cycloidal Land Propulsion grew from his desire for a lawn mower that would power itself circularly around those Virginia trees.
Clark Equipment Co. is adopting Hansen's propulsion method to its industrial trucks (the kind that shuttle crates and boxes hither and yon in warehouses and factories.
. . .
Michael Chucta, engineer in the advanced products section of Clark's industrial Truck Division at Battle Creek, says a vehicle utilizing such propulsion "is remarkably simple to manufacture" and foresees its use by various special job vehicles.
It isn't yet ready for your automobile, or vice versa, and may never be. Top speed of a vehicle thus propelled presently is calculated at 10 miles per hour, and it multiplies the bumps.
Cycloidal Land Propulsion utilizes wheels — one to any number, but three currently is considered the most satisfactory alignment. They are mounted (something like casters on a dresser to a circular undercarriage that is whirled around by the vehicle's power plant.
. . .
The wheels bite outward and inward from center at various points on their circular rotation to give a vehicle propulsion.
Steered to run in a true circle they halt the vehicle and act as brakes, since the tires would have to be dragged along if it were moved while the wheels were running in a true circle. It stops itself thus.
In forward movement, the wheels point outwardly as they traverse half the circle, and inwardly, toward the center, as they traverse the other half.
. . .
A Naval aviator, Hansen designed his original cycloidal or omnidirectional vehicle for control with a stick similar to that used in an airplane. The vehicle moves in whatever direction you move the stick, and the further you move the stick the faster it goes in that direction.
A vehicle using only three wheels (or one revolving cycloidal unit) requires a trailing pair of wheels attached to the rear of the vehicle to absorb torque and keep the vehicle from tending to spin in the direction the whirling wheels are spinning.
But Chucta told his fellow engineers that a vehicle using two units, each spinning in opposite directions, needs no other wheels to remain stable and translate (which means move in any direction).
Such a vehicle also can yaw, throw one end around to where the other was, or swing its front or rear to and fro.


1963-Press-Photo-Jerome-Susag-Michael-Chucta-Hansen-x640

Caption: Three men, from left to right, Jerome R. Susag, Michael Chucta, and Commander Howard C. Hansen, most responsible for its development in land vehicles showed how cycloidal propulsion worked at the Society of Automotive Engineers meeting.


Patent Information:

us3016966-1-x640

us3016966-2-x640

us3016966-3-x640

us3016966-4-x640

us3016966-5-x640

us3016966-6-x640

us3016966-7-x640

us3016966-8-x640

us3016966-9-x640

Publication number    US3016966 A
Publication date    16 Jan 1962
Filing date    12 Oct 1960
Inventors     Howard Clair Hansen
Original Assignee     Howard Clair Hansen

Omnidirectional drive system for land vehicles

Description:
Self-propelled land vehicles are, of course, well known. Many such vehicles are particularly intended for use as tractors or prime-movers. A very important requirement of tractor or truck vehicles is that they be as maneuverable as possible. It is also important that the application of driving power and the consequent production of tractive effort be as smooth and controlled as possible in order that maximum tractive effort may be available with an efficient utilization of power. When the tractor vehicle is to be employed for towing large aircraft or is to be used as a forklift truck, maneuverability is of prime importance.

It is a principal object of the present invention to provide an improved land vehicle having a novel omnidirectional drive system which enables the vehicle to be completely maneuverable to move or translate in any direction over the ground from a standing start.

It is another very important object of the present invention to provide a land vehicle having a novel drive system enabling solely by means of direct mechanical linkage the application of power and the production of tractive effort to be continuously variable from minimum to maximum limits of mechanical advantage.

Another object of this invention is to provide a land vehicle which may be supported on many wheels in order to achieve high load-bearing capacity and great tractive capability but in which great simplicity of construction is achieved in a novel drive system in which all wheels transmit tractive propelling power yet are free-running and un-powered in the conventional sense.

Another important object of the invention is to provide an improved land vehicle whose orientation, direction of travel, and power and speed may be either simultaneously or independently controllable by manipulation of a single control column or level.

Yet another important object of the invention is to provide a land vehicle that is completely maneuverable and controllable by the use of a single steering and power control column movable from a central position to any intended direction of movement of the vehicle and wherein the degree of movement of the control column from the central position in the intended direction controls the speed and the mechanical advantage of the tractive effort of the vehicle to increase the speed as the column is moved further.

Another object of this invention is to provide a land vehicle having a novel drive system the control lever of which may be manipulated with ease without necessity of aid from hydraulic power steering systems such as are frequently employed in conventional vehicles for the purpose of overcoming heavy control pressures.

Still another object of this invention is to provide an improved land vehicle that is completely maneuverable and highly controllable to be particularly well suited for use as an air port tractor or as a forklift truck or the like.

Yet another highly significant object of this invention is to provide a land vehicle which has no need for friction brakes in that the novel drive system of the invention inherently provides complete braking control over the vehicle.

In accordance with the invention, a vehicle main frame supporting the power source, drivers seat and controls 1s itself supported on at least one subframe that is rotatable beneath the main frame. One or more wheels supporting the vehicle are mounted on the periphery of the subframe. The power source may be connected to rotate the subframe and so long as the plane of rotation of each of the subframe wheels is maintained in tangential alignment with the rotation of the subframe, that is, so long as the axes of the wheel axles are radial with respect to the center of rotation of the subframe, the wheels will roll in a circular path on the ground and the subframe and the main frame will not translate in relation to the ground. The subframe wheels rotate on short shafts and are provided with kingpins and steering arms which are connected to a single control lever or column attached to the main frame of the vehicle. The control column is universally mounted and may be tilted in any direction and, so long as the control column bears a prependicular relationship to the plane of rotation of the subframe, the wheels are constrained to roll in a circular path on the ground as described above. When the control column is tilted in any direction away from the above-described perpendicular relationship, suitable linkage connecting the control column to the steering arms of the subframe wheesl causes the rotation of the subframe to vary the steering angles of the subframe Wheels; in sinusoidal fashion, thereby causing the subframe and the main frame to translate with respect to the ground. The interconnecting linkage is such as to cause the period of the sinusoidal variation of the steering angle of each wheel to be equal to the period of one revolution of the subframe, and such as to cause the phase-relationship between the rotation of the subframe and the steering angle variations to be determined by the direction in which the control column is tilted, and such as to cause the magnitude of the steering angle variations to be determined by the degree to which the control column is tilted. The arrangement is such, therefore, that the direction of movement of the vehicle is determined by the direction in which the control column is tilted, while the speed of the vehicle movement and, inversely, the mechanical advantage of the tractive effort are determined by the degree to which the control column is tilted. Thus complete maneuverability and controllability of the land vehicle are obtained with the use of a single control column. One or more trailing wheels may be fixed to the vehicle main frame to establish a heading for the main frame and to prevent contrarotation of the vehicle main frame, or a second subframe may be utilized to provide a means for controlling the heading of the main frame of the vehicle relative to the direction of movement of the vehicle over the ground.


Similar Drives used in Robotics:

Trochoid Drive by Osaka University – See Patent US8757316.

Publication date    24 Jun 2014
Filing date    7 Jun 2011


See other early Walking Wheels at the bottom here.
See other early Mobile Robots here.