Archive for the ‘Pre-Cybernetic Creatures’ Category

1920 – Electro-mechanical “protozoon” – Fritz Lux (German)

Lux Protozoo Nemes 1 x640 1920   Electro mechanical protozoon   Fritz Lux (German)

Lux' protozoon *

This device is a model of a unicellular animal: it consists of a short rubber cylinder with two slots (Fig. 98). According to the ideas of its inventor, it is anchored in a brook, half submerged in the water. The water in the "protozoon" is considered as the "food" it is in the process of digesting. If there is too much water in it (it is "overfed"), then the rubber cover distends and the lever, indicated by the broken line on the left, closes the lower contact at a and the small flap restricts the slot called "mouth"; in the case of too little water ("underfeeding") the slot is open wider because of the closing of the upper contact at a. This "protozoon" can even "learn" and "remember" according to a Pavlovian reflex process: if a bigwave dangerously distends the rubber cover, then the contact at b is also closed and the mouth is shut by the contactor actuated by the magnet c (unconditioned reflex), but, as the magnetization of c is preserved for a considerable time, if in the course of this time the photoelectric cell (whose circuit is not shown in full in the figure) perceives a big wave (by the glitter of the water!) it shuts the mouth in advance by means of the contactor d (conditioned reflex).

From Cybernetic Machines by L. Nemes, translated by I. Foldes (1969) (Hungarian original 1962).

F Lux 1920   Electro mechanical protozoon   Fritz Lux (German)

* Lux, F.: Gehirn und Seele. (Brain and Soul) 1920.


Illustrations from Gehirn und Steele of which the above adaption developed from:

Protozoon lux p1 x640 1920   Electro mechanical protozoon   Fritz Lux (German)

Photo-electric cell not activated by light as no wave to provide scattered light source.

Protozoon lux p2 x640 1920   Electro mechanical protozoon   Fritz Lux (German)

Photo-electric cell now actived by scattered light from approaching wave.


1898 – Telautomaton – Nikola Tesla (Serbian/American)

Tesla fig07 1898   Telautomaton   Nikola Tesla (Serbian/American)

telautomaton boat1 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

telautomaton model x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

tesla telautomaton boat2 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)


Tesla – The Electric Mind 2-2

tesla telautomaton boat3 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Model

Tesla telautomaton boat x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Model

tesla telautomaton inside x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

 TESLA0000 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

 TESLA0001 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

 TESLA0002 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

 TESLA0003 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

 TESLA0004 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Patent number: 613809 (see full patent here)
Filing date: Jul 1, 1898
Issue date: Nov 1898
 

Tesla PSJul1956 1898   Telautomaton   Nikola Tesla (Serbian/American)

In September 1898, Tesla demonstrates his radio-controlled torpedo boat at Madison Square Garden in Ney York City. (Popular Science July 1956).


From Miessner's book "On the Early History of Radio Guidance", published in 1964.

44 BENJAMIN FRANKLIN MIESSNER……
I [Miessner] am almost certain that the reader who reviewed the book for Van Nostrand was none other than Nikola Tesla. Since I was planning to include descriptions and drawings of his pioneering efforts in the field of automatic control, I had written to him, only to find that he was already well acquainted with my project. We exchanged three letters in all, the first in September 1915. (The originals of his letters are in the Manuscript Division of the New York Public Library.)
Tesla to Miessner, Sept. 29, 1915:
Your favor of September 24th has been received in due course and has interested me in view of your forthcoming book on "Radio Dynamics". Some time ago my friend, Charles E. Speirs of the D. Van Nostrand Company, told me that you were engaged in its preparation and I commended it for publication as very little has been written on the subject …
I am naturally greatly absorbed in this field of invention which has been barely touched and which I look upon as extremely promising. In an article in the Century Magazine, copy of which I am forwarding to you, I have related the circumstances which led me to develop the idea of a self-propelled automaton. My experiments were begun sometime in '92 and from that period, on, until '95, in my Laboratory at 35 South Fifth Avenue, I exhibited a number of contrivances and perfected plans for several complete telautomata. After the destruction of my Laboratory by fire in '95, there was an interruption in these labors which, however, were resumed in '96 in my new Laboratory at 46 East Houston Street where I made more striking demonstrations,
44 BENJAMIN FRANKLIN MIESSNER
in many instances actually transmitting the whole motive energy to the devices instead of simply controlling the same from distance. In '97 I began the construction of a complete automaton in the form of a boat, which is described in my original patent specification 013,809. A copy of this, also, is being forwarded under separate cover. This application was written during that year but the filing was delayed until July of the following year, long before which date the machine had been often exhibited to visitors who never ceased to wonder at the performances. The drawings of this specification were made from this machine to scale. In that year I also constructed a larger boat which I exhibited, among other things, in Chicago during a lecture before the Commercial Club. In this lecture I treated the whole field broadly, not limiting myself to mechanisms controlled from distance but to machines possessed of their own intelligence. Since that time I have advanced greatly in the evolution of the invention and think that the time is not distant when I shall show an automaton which, left to itself, will act as though possessed of reason and without any wilful control from the outside. Whatever be the practical possibilities of such an achievement, it will mark the beginning of a new epoch in mechanics.
I would call your attention to the fact that while my specification, above mentioned, shows the automatic mechanism as controlled through a simple tuned circuit, I have used individualized control; that is, one based on the co-operation of several circuits of different periods of vibration, a principle which I had already developed at that time and which was subsequently described in my patents #723,188 and 723,189 of March, 1903. The machine was in this form when I made demonstrations with it in 1898 before the Chief Examiner, Seeley, prior to the grant of my basic patent on Method of and Apparatus for Controlling Mechanisms at a Distance. [My italics.]
In my experiments and investigations in Colorado from 1899 to 1900, I developed, among other things, two important discoveries which will be essential in the future development of telautomatics. They are described in my patents #685,953 and 119,732 which were taken out at a later date. These two advances make it possible to supply to an automaton great amounts of energy and also to control it with the utmost accuracy when it is entirely out of sight and at any distance. 


THE PROBLEM OF INCREASING HUMAN ENERGY
WITH SPECIAL REFERENCES TO THE HARNESSING OF THE SUN'S ENERGY.
by Nikola Tesla

Century Illustrated Magazine, June 1900
THE ONWARD MOVEMENT OF MAN—THE ENERGY OF THE MOVEMENT—THE THREE WAYS OF INCREASING HUMAN ENERGY.

…….
Figure 2.
A machine having all the bodily or translatory movements and the operations of the interior mechanism controlled from a distance without wires. The crewless boat shown in the photograph contains its own motive power, propelling and steering machinery, and numerous other accessories, all of which are controlled by transmitting from a distance, without wires, electrical oscillations to a circuit carried by the boat and adjusted to respond only to these oscillations.

With these experiences it was only natural that, long ago, I conceived the idea of constructing an automaton which would mechanically represent me, and which would respond, as I do myself, but, of course, in a much more primitive manner, to external influences. Such an automaton evidently had to have motive power, organs for locomotion, directive organs, and one or more sensitive organs so adapted as to be excited by external stimuli. This machine would, I reasoned, perform its movements in the manner of a living being, for it would have all the chief mechanical characteristics or elements of the same. There was still the capacity for growth, propagation, and, above all, the mind which would be wanting to make the model complete. But growth was not necessary in this case, since a machine could be manufactured full grown, so to speak. As to the capacity for propagation, it could likewise be left out of consideration, for in the mechanical model it merely signified a process of manufacture. Whether the automation be of flesh and bone, or of wood and steel, it mattered little, provided it could perform all the duties required of it like an intelligent being. To do so, it had to have an element corresponding to the mind, which would effect the control of all its movements and operations, and cause it to act, in any unforeseen case that might present itself, with knowledge, reason, judgment, and experience. But this element I could easily embody in it by conveying to it my own intelligence, my own understanding. So this invention was evolved, and so a new art came into existence, for which the name "telautomatics" has been suggested, which means the art of controlling the movements and operations of distant automatons. This principle evidently was applicable to any kind of machine that moves on land or in the water or in the air. In applying it practically for the first time, I selected a boat (see Fig. 2). A storage battery placed within it furnished the motive power. The propeller, driven by a motor, represented the locomotive organs. The rudder, controlled by another motor likewise driven by the battery, took the place of the directive organs. As to the sensitive organ, obviously the first thought was to utilize a device responsive to rays of light, like a selenium cell, to represent the human eye. But upon closer inquiry I found that, owing to experimental and other difficulties, no thoroughly satisfactory control of the automaton could be effected by light, radiant heat, hertzian radiations, or by rays in general, that is, disturbances which pass in straight lines through space. One of the reasons was that any obstacle coming between the operator and the distant automaton would place it beyond his control. Another reason was that the sensitive device representing the eye would have to be in a definite position with respect to the distant controlling apparatus, and this necessity would impose great limitations in the control. Still another and very important reason was that, in using rays, it would be difficult, if not impossible, to give to the automaton individual features or characteristics distinguishing it from other machines of this kind. Evidently the automaton should respond only to an individual call, as a person responds to a name. Such considerations led me to conclude that the sensitive device of the machine should correspond to the ear rather than the eye of a human being, for in this case its actions could be controlled irrespective of intervening obstacles, regardless of its position relative to the distant controlling apparatus, and, last, but not least, it would remain deaf and unresponsive, like a faithful servant, to all calls but that of its master. These requirements made it imperative to use, in the control of the automaton, instead of light or other rays, waves or disturbances which propagate in all directions through space, like sound, or which follow a path of least resistance, however curved. I attained the result aimed at by means of an electric circuit placed within the boat, and adjusted, or "tuned," exactly to electrical vibrations of the proper kind transmitted to it from a distant "electrical oscillator." This circuit, in responding, however feebly, to the transmitted vibrations, affected magnets and other contrivances, through the medium of which were controlled the movements of the propeller and rudder, and also the operations of numerous other appliances.
By the simple means described the knowledge, experience, judgment—the mind, so to speak—of the distant operator were embodied in that machine, which was thus enabled to move and to perform all its operations with reason and intelligence. It behaved just like a blindfolded person obeying directions received through the ear.
The automatons so far constructed had "borrowed minds," so to speak, as each merely formed part of the distant operator who conveyed to it his intelligent orders; but this art is only in the beginning. I purpose to show that, however impossible it may now seem, an automaton may be contrived which will have its "own mind," and by this I mean that it will be able, independent of any operator, left entirely to itself, to perform, in response to external influences affecting its sensitive organs, a great variety of acts and operations as if it had intelligence. It will be able to follow a course laid out or to obey orders given far in advance; it will be capable of distinguishing between what it ought and what it ought not to do, and of making experiences or, otherwise stated, of recording impressions which will definitely affect its subsequent actions. In fact, I have already conceived such a plan.
Although I evolved this invention many years ago and explained it to my visitors very frequently in my laboratory demonstrations, it was not until much later, long after I had perfected it, that it became known, when, naturally enough, it gave rise to much discussion and to sensational reports. But the true significance of this new art was not grasped by the majority, nor was the great force of the underlying principle recognized. As nearly as I could judge from the numerous comments which appeared, the results I had obtained were considered as entirely impossible. Even the few who were disposed to admit the practicability of the invention saw in it merely an automobile torpedo, which was to be used for the purpose of blowing up battleships, with doubtful success. The general impression was that I contemplated simply the steering of such a vessel by means of Hertzian or other rays. There are torpedoes steered electrically by wires, and there are means of communicating without wires, and the above was, of course an obvious inference. Had I accomplished nothing more than this, I should have made a small advance indeed. But the art I have evolved does not contemplate merely the change of direction of a moving vessel; it affords means of absolutely controlling, in every respect, all the innumerable translatory movements, as well as the operations of all the internal organs, no matter how many, of an individualized automaton. Criticisms to the effect that the control of the automaton could be interfered with were made by people who do not even dream of the wonderful results which can be accomplished by use of electrical vibrations. The world moves slowly, and new truths are difficult to see. Certainly, by the use of this principle, an arm for attack as well as defense may be provided, of a destructiveness all the greater as the principle is applicable to submarine and aerial vessels. There is virtually no restriction as to the amount of explosive it can carry, or as to the distance at which it can strike, and failure is almost impossible. But the force of this new principle does not wholly reside in its destructiveness. Its advent introduces into warfare an element which never existed before—a fighting-machine without men as a means of attack and defense. The continuous development in this direction must ultimately make war a mere contest of machines without men and without loss of life—a condition which would have been impossible without this new departure, and which, in my opinion, must be reached as preliminary to permanent peace. The future will either bear out or disprove these views. My ideas on this subject have been put forth with deep conviction, but in a humble spirit.


Nikola Tesla – Prodigal  Genius by John J. O'Neill

Nikola Tesla – Prodigal  Genius
p164
TESLA developed his inventions to the point at which they were spectacular performers before they were demonstrated to the public. When presented, the performance always greatly exceded the promise. This was the case with his first public demonstration of "wireless," but he complicated the situation by coupling with his radio invention another new idea—the robot (see my note below-RH).
Tesla staged his demonstration in the great auditorium of Madison Square Garden, then on the north side of Madison Square, in September, 1898, as part of the first annual Electrical Exhibition. He had a large tank built in the center of the arena
165
and in this he placed an iron-hulled boat a few feet long, shaped like an ark, which he operated by remote control by means of his wireless system.
Extending upward from the center of the roof of the boat was a slender metal rod a few feet high which served as an antenna, or aerial, for receiving the wireless wave. Near the bow and stern were two small metal tubes about a foot high surmounted by small electric lamps. The interior of the hull was packed with a radio receiving set and a variety of motor-driven mechanisms which put into effect the operating orders sent to the boat by wireless waves. There was a motor for propelling the boat and another motor for operating the servo-mechanism, or mechanical brain, that interpreted the orders coming from the wireless receiving set and translated them into mechanical motions, which included steering the boat in any direction, making it stop, start, go forward or backward, or light either lamp. The boat could thus be put through the most complicated maneuvers.
Anyone attending the exhibition could call the maneuver for the boat, and Tesla, with a few touches on a telegraph key, would cause the boat to respond. His control point was at the far end of the great arena.
The demonstration created a sensation and Tesla again was the popular hero. It was a front-page story in the newspapers. Everyone knew the accomplishment was a wonderful one, but few grasped the significance of the event or the importance of the fundamental discovery which it demonstrated. The basic aspects of the invention were obscured by the glamor of the demonstration.
The Spanish American War was under way. The success of the U.S. Navy in destroying the Spanish fleets was the leading topic of conversation. There was resentment over the blowing up of the U.S.S. Maine in Havana Harbor. Tesla's demonstration fired the imagination of everyone because of its possibilities as a weapon in naval warfare.
166
Waldemar Kaempffert, then a student in City College and now Science Editor of the New York Times, discussed its use as a weapon with Tesla.
"I see," said Kaempffert, "how you could load an even larger boat with a cargo of dynamite, cause it to ride submerged, and explode the dynamite whenever you wished by pressing the key just as easily as you can cause the light on the bow to shine, and blow up from a distance by wireless even the largest of battleships." (Edison had earlier designed an electric torpedo which received its power by a cable that remained connected with the mother ship.)
Tesla was patriotic, and was proud of his status, which he had acquired in 1889, as a citizen of the United States. He had offered his invention to the Government as a naval weapon, but at heart he was opposed to war.
"You do not see there a wireless torpedo," snapped back Tesla with fire flashing in his eyes, "you see there the first of a race of robots, mechanical men which will do the laborious work of the human race."
The "race of robots" was another of Tesla's original and im-portant contributions to human welfare. It was one of the items of this colossal project for increasing human energy and improving the efficiency of its utilization. He visualized the application of the robot idea to warfare as well as to peaceful pursuits; and out of the broad principles enunciated, lie developed an accurate picture of warfare as it is being carried on today with the use of giant machines as weapons—the robots he described.
"This evolution," he stated in an article in the Century Magazine of June, 1900, "will bring more and more into prominence a machine or mechanism with the fewest individuals as an element of warfare. . . . Greatest possible speed and maximum ale of energy delivery by the war apparatus will be the main object. The loss of life will become smaller. . . ."
Outlining the experiences that led him to design the robots, or automatons, as he called them, Tesla stated:
167
I have by every thought and act of mine, demonstrated, and do so daily, to my absolute satisfaction that I am an automaton endowed with power of movement, which merely responds to external stimuli beating upon my sense organs, and thinks and moves accordingly. . . .
With these experiences it was only natural that, long ago, I conceived the idea of constructing an automaton which would mechanically represent me, and which would respond, as I do myself, but, of course, in a much more primitive manner, to external influences. Such an automaton evidently had to have motive power, organs for locomotion, directive organs, and one or more sensitive organs so adapted as to be excited by external stimuli.
This machine would, I reasoned, perform its movements in the manner of a living being, for it would have all of the chief elements of the same. There was still the capacity for growth, propagation, and, above all, the mind which would be wanting to make the model complete. But growth was not necessary in this case since a machine could be manufactured full-grown, so to speak. As to capacity for propagation, it could likewise be left out of consideration, for in the mechanical model it merely signified a process of manufacture.
Whether the automaton be of flesh and bone, or of wood and steel, mattered little, provided it could perform all the duties required of it like an intelligent being. To do so it would have to have an element corresponding to the mind, which would effect the control of its movements and operations, and cause it to act, in any unforeseen case that might present itself, with knowledge, reason, judgement and experience. But this element I could easily embody in it by conveying to it my own intelligence, my own understanding. So this invention was evolved, and so a new art came into existence, for which the name "telautomatics" has been suggested, which means the art of controlling the movements and operations of distant automatons.
In order to give the automaton an individual identity it would be provided with a particular electrical tuning, Tesla explained, to which it alone would respond when waves of that particular frequency were sent from a control transmitting station; and other automatons would remain inactive until their frequency was transmitted. This was Tesla's fundamental radio tuning invention, the need for which other radio inventors had not yet
168
glimpsed although Tesla had described it publicly a half-dozen years earlier.
Tesla not only used in the control of his automaton the long waves now used in broadcasting—which are very different from the short waves used by Marconi and all others; for those could be interfered with by the imposition of an intervening object— but he was explaining the use, through his system of tuning, of the spectrum of allocations for individual stations that now appears on the dials of radio receiving sets. He continued:
By the simple means described the knowledge, experience, judgement—the mind, so to speak—of the distant operator were embodied in that machine, which was thus enabled to move and perform all of its operations with reason and intelligence. It behaved just like a blindfolded person obeying directions received through the ear.
The automatons so far constructed had "borrowed minds," so to speak, as each formed merely part of the distant operator who conveyed to it his intelligent orders; but this art is only in the beginning.
I purpose to show that, however impossible it may now seem, an Automaton may be contrived which will have its "own mind," and by this I mean that it will be able, independently of any operator, kit entirely to itself, to perform, in response to external influences affecting its sensitive organs, a great variety of acts and operations as if it had intelligence.
It will be able to follow a course laid out or to obey orders given far in advance; it will be capable of distinguishing between what it might and ought not to do, and of making experiences or, otherwise stated, of recording impressions which will definitely affect its subsequent actions. In fact I have already conceived such a plan.
Although I evolved this invention many years ago and explained it to my visitors very frequently in my laboratory demonstrations, it was not until much later, long after I had perfected it, that it became known, when, naturally enough, it gave rise to much discussion and to sensational reports.
But the true significance of this new art was not grasped by the majority, nor was the great force of the underlying principle recognized. As nearly as I could judge from the numerous comments which then appeared, the results I had obtained were considered as entirely impossible. Even the few who were disposed to admit the
169 practicability of the invention saw in it merely an automobile torpedo, which was to be used for the purpose of blowing up battleships, with doubtful success. . . .
But the art I have evolved does not contemplate merely the change of direction of a moving vessel; it affords means of absolutely controlling in every respect, all the innumerable translatory movements, as well as the operations of all the internal organs, no matter how many, of an individualized automaton.
Tesla, in an unpublished statement, prepared fifteen years later, recorded his experience in developing automata, and his unsuccessful effort to interest the War Department, and likewise commercial concerns, in his wirelessly controlled devices.
The idea of constructing an automaton, to bear out my theory, presented itself to me early but I did not begin active work until 1893, when I started my wireless investigations. During the succeeding two or three years, a number of automatic mechanisms, actuated from a distance by wireless control, were constructed by me and exhibited to visitors in my laboratory.
In 1896, however, I designed a complete machine capable of a multitude of operations, but the consummation of my labors was delayed until later in 1897. This machine was illustrated and described in my article in the Century Magazine of June 1900, and other periodicals of that time and, when first shown in the beginning of 1898, it created a sensation such as no other invention of mine has ever produced.
In November 1898, a basic patent on the novel art was granted to me, but only after the Examiner-in-Chief had come to New York and witnessed the performance, for what I claimed seemed unbelievable. I remember that when later I called on an official in Washington, with a view of offering the invention to the Government, he burst out in laughter upon my telling him what I had accomplished. Nobody thought then that there was the faintest prospect of perfecting such a device.
It is unfortunate that in this patent, following the advice of my attorneys, I indicated the control as being effected through the medium of a single circuit and a well-known form of detector, for the reason that I had not yet secured protection on my methods and apparatus for individualization. As a matter of fact, my boats were controlled through the joint action of several circuits and inter-
170 ference of every kind was excluded. Most generally I employed receiving circuits in the form of loops, including condensers, because the discharges of my high tension transmitter ionized the air in the hall so that even a very small aerial would draw electricity from the surrounding atmosphere for hours.
Just to give an idea, I found, for instance, that a bulb 12" in diameter, highly exhausted, and with one single terminal to which a short wire was attached, would deliver well on to one thousand successive flashes before all charge of the air in the laboratory was neutralized. The loop form of receiver was not sensitive to such a disturbance and it is curious to note that it is becoming popular at this late date. In reality it collects much less energy than the aerials or a long grounded wire, but it so happens that it does away with a number of defects inherent to the present wireless devices.
In demonstrating my invention before audiences, the visitors were requested to ask any questions, however involved, and the automaton would answer them by signs. This was considered magic at that time but was extremely simple, for it was myself who gave the replies by means of the device.
At the same period another larger telautomatic boat was constructed. It was controlled by loops having several turns placed in the hull, which was made entirely water tight and capable of submergence. The apparatus was similar to that used in the first with the exception of certain special features I introduced as, for example, incandescent lamps which afforded a visible evidence of the proper functioning of the machine and served for other purposes.
These automata, controlled within the range of vision of the operator, were, however, the first and rather crude steps in the evolution of the Art of Telautomatics as I had conceived it. The next logical improvement was its application to automatic mechanisms beyond the limits of vision and at great distances from the center of control, and I have ever since advocated their employments as instruments of warfare in preference to guns. The importance of his now seems to be recognized, if I am to judge from casual announcements through the press of achievements which are said to be extraordinary but contain no merit of novelty whatever.
In an imperfect manner it is practicable, with the existing wireless plants, to launch an aeroplane, have it follow a certain approximate course, and perform some operation at a distance of many hundreds of miles. A machine of this kind can also be mechanically controlled in several ways and I have no doubt that it may prove
171 of some usefulness in war. But there are, to my best knowledge, no instrumentalities in existence today with which such an object could be accomplished in a precise manner. I have devoted years of study to this matter and have evolved means, making such and greater wonders easily realizable.
As stated on a previous occasion, when I was a student at college I conceived a flying machine quite unlike the present ones. The underlying principle was sound but could not be carried into practice for want of a prime-mover of sufficiently great activity. In recent years I have successfully solved this problem and am now planning aerial machines devoid of sustaining planes, ailerons, propellers and other external attachments, which will be capable of immense speeds and are very likely to furnish powerful arguments for peace in the near future. Such a machine, sustained and propelled entirely by reaction, can be controlled either mechanically or by wireless energy. By installing proper plants it will be practicable to project a missile of this kind into the air and drop it almost on the very spot designated which may be thousands of miles away. But we are not going to stop at this.
Tesla is here describing—nearly fifty years ago—the radio controlled rocket, which is still a confidential development of World War II, and the rocket bombs used by the Germans to attack England. The rocket-type airship is a secret which probably died with Tesla, unless it is contained in his papers sealed by the Government at the time of his death. This, however, is unlikely, as Tesla, in order to protect his secrets, did not commit his major inventions to paper, but depended on an almost infallible memory for their preservation.
"Telautomata," he concluded, "will be ultimately produced, capable of acting as if possessed of their own intelligence and their advent will create a revolution. As early as 1898 I proposed to representatives of a large manufacturing concern the construction and public exhibition of an automobile carriage which, left to itself, would perform a great variety of operations involving something akin to judgment. But my proposal was deemed chimerical at that time and nothing came from it."
Tesla, at the Madison Square Garden demonstration in 1898
172
which lasted for a week, presented to the world, then, two stupendous developments, either of which alone would have been too gigantic to have been satisfactorily assimilated by the public in a single presentation. Either one of the ideas dimmed the glory of the other.
This first public demonstration of wireless, the forerunner of modern radio, in the amazing stage of development to which Tesla carried it, at this early date, was too tremendous a project to be encompassed within a single dramatization. In the hands of a competent public-relations councillor, or publicity man, as he was called in those days (but the employment of one was utterly abhorrent to Tesla), this demonstration would have been limited to the wireless aspect alone, and would have included just a simple two-way sending-and-receiving set for the transmission of messages by the Morse dots and dashes. Suitably dramatized, this would have been a sufficient thrill for one show. At a subsequent show he could have brought in the tuning demonstration which would have shown the selective response of each of a series of coils, indicated by his strange-looking vacuum-tube lamps. The whole story of just the tuning of wireless circuits and stations to each other was too big for any one demonstration. An indication of its possibilities was all the public could absorb.
The robot, or automaton, idea was a new and an equally stupendous concept, the possibilities of which were not lost, however, on clever inventors; for it brought in the era of the modern labor-saving device—the mechanization of industry on a mass-production basis.
Using the Tesla principles, John Hays Hammond, Jr. developed an electric dog, on wheels, that followed him like a live pup. It was motor operated and controlled by a light beam through selenium cells placed behind lenses used for eyes. He also operated a yacht, entirely without a crew, which was sent out to sea from Boston harbor and brought back to its wharf by wireless control.
A manless airplane was developed toward the close of the
173
First World War. It rose from the ground, flew one hundred miles to a selected target, dropped its bombs, and returned to home airport, all by wireless control. It was also developed so that on a signal from a distant radio station the plane would rise into the air, choose the proper direction, fly to a city hundreds of miles away and set itself down in the airport at that city. This Tesla-type robot was developed in the plant of the Sperry Gyroscope Company, where Elmer Sperry invented a host of amazing mechanical robots controlled by gyroscopes, such as the automatic pilots for airplanes and for ships.
All of the modern control devices using electronic tubes anal electric eyes that make machines seem almost human and enable them to perform with superhuman activity, dependability, accuracy and low cost, are children of Tesla's robot, or automaton The most recent development, in personalized form, was the mechanical man, a metal human monster giant, that walked, talked, smoked a cigarette, and obeyed spoken orders, in the exhibit of the Westinghouse Electric and Manufacturing Company at the New York World's Fair. Robots have been used, is well, to operate hydroelectric powerhouses and isolated substations of powerhouses.
In presenting this superabundance of scientific discovery in a single demonstration, Tesla was manifesting the superman in an additional role that pleased him greatly—that of the man magnificent. He would astound the world with a superlative demonstration not only of the profundity of the accomplishments of the superman, but, in addition, of the prolific nature of the mind of the man magnificent who could shower on the world a super-abundance of scientific discoveries.
174
ELEVEN
TESLA was now ready for new worlds to conquer. After pre- senting to the public his discoveries relating to wireless signaling or the transmission of intelligence, as he called it, Tesla was anxious to get busy on the power phase: his projected world-wide distribution of power by wireless methods.
Again Tesla was faced with a financial problem — or, to state the matter simply, he was broke. The $40,000 which was paid for the stock of the Nikola Tesla Company by Adams had been spent. The company had no cash on hand; but it held patents worth many millions if they had been handled in a practical way. A gift of $10,000 from John Hays Hammond, the famous mining engineer, had financed the work leading up to the Madison Square Garden wireless and robot demonstration.
175

RH-Dec 2010 – Although John J. O'Neill quotes Tesla, He's quoting him in 1898 using the word "robot" which wasn't coined until 1920 and came in active use by the late 1920's. He should have stayed with the word "automata".


The photos below are from my European trip with David Buckley in 2009.

Tesla Telautomaton 2009 Beograd 007 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 010 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 012 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 054 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 058 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 063 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

tesla telautomaton ship x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

See the story on the above replica model here.


The second, older model on show at the Tesla Museum.

Tesla Telautomaton 2009 Beograd 068 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 036 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 035 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 067 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 070 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 074 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 075 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

Tesla Telautomaton 2009 Beograd 076 x640 1898   Telautomaton   Nikola Tesla (Serbian/American)


tesla vaganaccreek x640 1898   Telautomaton   Nikola Tesla (Serbian/American)

A replica radio-controlled robot boat, in Tesla's native village of Smiljan, some 200 kilometers south of Zagreb, on 10 July 2006. Croatia and neighboring Serbia were marking the 150th anniversary of birth of Tesla.


1912 – Seleno, the Electric Dog – Hammond / Miessner -Addendum

In my earlier post on the "Electric Dog" by Miessner and Hammond (here), I commented on some uncertainty regarding Miessner's and Hammond's relationship together, and as to whether or not there may have been another dog built. This was as a result of how the newspaper and magazine articles were reporting on the "electric dog".

I finally got around to getting a copy of Miessner's book "On the Early History of Radio Guidance", published in 1964.

In 1957, in the proceedings for the Institute of Radio Engineers No45 pp1191-1208, there was an article written by John Hays Hammond Jr., together with E.S. Purlington titled "A History of Some Foundations of Modern Radio-Electronic Technology". The image below is from that article.

Electric dog Hammond Purlington 57 x640 1912   Seleno, the Electric Dog   Hammond / Miessner  Addendum

This article covers many aspects of Radio-Electronics, but for our purposes here we are only interested in Radio-Guidance and the "electric dog". In essesence, claims were made around secret work and Hammond's patents on radio-guidance, all without a single reference to Miessner himself. There was a bit of controversy at the time, but Miessner remained quiet, until 1964 by way of publishing his book.

Miessner 64 p37 x640 1912   Seleno, the Electric Dog   Hammond / Miessner  Addendum

In the book, he describes Hammond's sketch diagram of a phototropic vehicle. Hammond was influenced by Loeb's writings on "trophism".

Hammond goes abroard, and leaves Miessner and an assistant  mechanic, Joseph Broich, to build the machine. Miessner had already outlined a similar device, in tracking a searchlight for a torpedo. So with Hammond's  brief, Miessner and Broich designed and constructed what was later to be called the "electric dog".

Miessner 64 p39c x640 1912   Seleno, the Electric Dog   Hammond / Miessner  Addendum

Compare with Patent 1,387,850 by Hammond filed Apr 1912. see here.

Hammond's and Miessner's relationship deteriorated somewhat, and Miessner left Hammond's employ and went back to school. In wishing to demonstrate the model, Hammond allowed Miessner to borrow this obsolete piece of technology. Miessner describes the lecture series which so popularised the "electric dog".

So, there was only one dog, Hammond initiated and funded its development, Miessner refined the design and built it with Brioch in 1912, and Miessner later borrowed it.

[Note: also significant in the below is a transcript of a letter from Nikola Tesla to Miessner on Teleautomatons.]


Below are the relevant text extracts from Miessner's book.  

p12 BENJAMIN FRANKLIN MIESSNER
….. it would appear that Hammond's technical background was very limited indeed at the time. This view is reinforced by a plaintive query I received a few days later.
Hammond to Miessner, March 1, 1912:
As I understand, in the order of the General Electric Co. you intend to excite the fields of the low frequency, thousand spark frequency, generators with the high frequency alternators. This will give the effect of producing a 500 cycle note at the receiving station. Each of the 500 cycle circuits will in turn be composed of higher periodicities which are produced by the high frequency alternators. Explain the principle of this in your next letter a little more definitely.
A great many of Hammond's conceptions, given to me orally or by letter, were so crudely or wrongly put that they required invention on my own part to give them any meaning at all.
Hammond to Miessner, March 19,1912:
I have here enclosed a sketch of a proposed method of multiplex telephony, which if allright I wish you to submit to Mr Austin … Also include in my Orientation patent the idea of stopping the machine by the intensity of the light.
But more often the procedure was reversed and ideas went from me to Hammond and then to the patent attorneys.
Hammond to Miessner, March 23, 1912:
I would suggest your sending me your descriptions of the System of Selective Multiplex Wireless Telegraphy and Telephony and the description of the undamped waves of the periodically varying amplitude and the description of the Orientation System. I will go over these carefully and draw up claims for them and forward them to Austin.
I have said enough to show that during this entire period, far from actively undertaking laboratory work or even acting as my collaborator,
EARLY HISTORY OF RADIO GUIDANCE p13
Hammond was not even present in the laboratory except for brief visits; his relationship to the technical work being carried on was rather that of an absentee entrepreneur. In the spring of 1912, he actually left the country, having been appointed a member of the U.S. delegation to the International Radiotelegraphic Conference in London. I saw him off: there is a snapshot of the two of us on board his ship in New York harbor (Fig. 3). Besides going to London, Hammond managed to contact every important expert in Europe. From London he wrote me (on Conference Radiotélégraphique Internationale de Londres stationery, under the date le 4 Juillet) that he had already been in touch with "Count Arco, Majorana, Ferrie, Dr. Goldschmidt, Marconi, and Duddell, Erskine Murray, Prof
3.—Snapshot of author (right) and Hammond taken on day of Hammond's departure for England in June 1912.
p14 BENJAMIN FRANKLIN MIESSNER
Flemming and others. I have a stack of papers … that will fill a trunk … I am in touch with Zenneck … keep all of this to yourself."
It was during this period that I conceived, designed, and supervised the construction of an entirely new torpedo-control system and apparatus, utilizing known principles where possible and inventing new features as necessary. It was very fortuitious for me that the work was carried on in Lowenstein's laboratory, for I certainly learned a lot from him while spending nearly half of my time helping out on his own projects. On the other hand, Lowenstein participated relatively little in the work that was being done in his laboratory for Hammond, which was left almost entirely to me. In addition to the above-mentioned torpedo-control system, I also originated and designed many circuits related to the development of a jam-proof radio transmitter-receiver system.
First, I constructed four vacuum-tube assemblies (designated by Lowenstein as "ion controllers") for general experimental use. Their first application was in replacing the motor-driven, commutator-type dc current interrupters for tests on an of beat-type selective system that I had also designed. Tests with the audio-beat system proved to be very successful, albeit with a beat-tuned reed relay, but to some extent also with a beat-tuned LC circuit, followed by detector and a de relay. The main problem of close-range interference by enemy rf transmitters was not yet solved in practice; such interference could lock on the torpedo-control receiver and render the desired control ineffective.
Second, I increased the sensitivity and reliability under extreme vibration of the Weston microammeter relay by substituting a storage-battery-excited electromagnet for the permanent magnet (quadrupling sensitivity) and improving the contacts: a pointed platinum contact replaced the button contact on a moving arm, and a mercury globule covered by an oil film (to limit oxidation) replaced a fixed platinum contact element. The design was quickly carried out: my notebook shows that it was conceived and first tested in mid-February, with final tests taking place on March 1, 1912. (This instrument, which later accompanied me to Gloucester, attracted the attention of all who saw it; I well recall overhearing Dr. G. W. Pierce of Harvard University, when he first visited us at Gloucester, saying to Hammond that he would "take off his hat to the man who made that.")
Next, I designed and constructed a rotary stepping switch driven by an electromagnet, a crucial element in starting, stopping, or reversing the direction of rotation of the steering motor's armature-current control. A microammeter relay controlled a more powerful relay in the magnet circuit, which in turn controlled the pawl-and-ratchet device. The final design was carried out by Frederick Pierce Co. at 18 Rose Street in New York City.
EARLY HISTORY OF RADIO GUIDANCE p15
An even more important component that I designed and saw through construction was a motor-power relay with an adjustable time delay. This device involved a solenoid with a sliding core connected to a piston in a pneumatic dashpot fitted with an adjustable needle-valve air inlet and a spring-biased flapper-type valve for quick exhaust. An extension spring at one end served to return the core quickly to its normal position. A contact point on the opposite end of the core connected to a fixed contact; these contacts were in series with the armature circuit of the steering motor and the battery. After the stepping switch had selected the correct armature rotation direction, no current would flow until the time-delay switch finally closed the armature circuit ; but the field winding of the motor remained always energized.
This was a very necessary device, for the following reason. If the rudder was set, say, for a half-starboard position, and the steering motor was stopped because the stepping switch was in an "off" position, the stepping switch would have to go to a reverse (i.e., port) rudder position before it could go through the next "stop" and onto the following starboard rudder position. (The stepping switch ran in a continuous repetitive sequence, off—starboard—off—port—off—starboard, etc.) The time-delay relay simplified the operation, since short impulses did not switch on the current to the motor armature, so that any intermediate positions of the stopping switch could be, so to speak, skipped.
I also devised a mechanism driven by the steering motor via a flexible shaft; this device acted as a limiting switch for the steering motor, permitted setting of the rudder at the "dead center" position, and controlled flashing signal lights that indicated rudder position; and I designed such details as a worm drive and a clutch for the steering motor, so that it could be used in conjunction with a conventional steering wheel and be manually coupled to it or decoupled from it.
Finally, I designed and constructed an automatic photoelectric orientation mechanism for the purpose of demonstrating the "homing" type of guidance system. This apparatus, which became known as the "electric dog," attracted much attention; it is shown as Fig. 3 of the Hammond-Purington paper.'
It was during this period that I also conceived and designed, but did not carry through to construction, a stationary type of automatic orientation mechanism for mounting on a moving vehicle or boat. A rotating circular table of the "lazy Susan" type carried a motor with a pinion meshing with a stationary outer circular rack. The turntable also carried two condensing lenses separated by an opaque screen, and a selenium cell behind each lens. The entire apparatus was enclosed in a weatherproof housing through which the "eyes" looked outward. The device was intended for use with my fixed-frequency, amplitude-modulated, infrared
p16 BENJAMIN FRANKLIN MIESSNER
control system and would serve to keep the "eyes" always facing the control searchlight as a sunflower faces the sun, to avoid the possibility of enemy searchlight interference. Moreover, the control searchlight would be af-modulated mechanically to prevent stray interference by sunlight, or 120-cps-modulated electric light, and thus to permit daylight operation. In his letter to me of March 6, 1912, after acknowledging receipt of my progress report on this device, Hammond concluded by saying, "I also approve of your method of light orientation." (Previously, on Feb. 5, 1912, he had authorized purchase of the searchlight and other apparatus for this control.)
I even devised another method of modulating the electric-arc searchlight, using 500-cps ac instead of dc. Instead of using a large inductance to sustain the arc, I planned to use a small high-voltage step-up transformer to charge a high-voltage condenser that would periodically discharge across the arc carbons, as in a spark gap. (Choke coils were included to prevent the rf discharges from passing through the generator.) The primary current of the step-up transformer would be fed through a phase-advancing capacitor adjusted so as to cause the rf spark discharge across the arc carbons to occur when the primary current was passing through zero, so that the rf spark discharge would prevent extinguishing of the of arc current, which would ride across on the rf discharge. (I never did get around to testing this scheme during my work with Hammond, but I did test it a few years later at the Kearney power plant of the Public Service Co. of New Jersey, when I was employed by E. J. Simon, Inc. These tests were carried out with the help of William Siebenmorgan, a consultant to Simon who was very much interested in electric arc welding. The high currents and low power factors inherent in the use of arc welders, in which a large inductance is used to sustain the arc, were anathema to the power companies and we were encouraged to develop my alternate scheme; but although the tests were successful, we did not carry them very far. A similar scheme was later patented by others and I understand is in considerable use today.)
……
36 BENJAMIN FRANKLIN MIESSNER
But my misgivings regarding the motives that had inspired this offer were not dispelled; I wrote him refusing the offer and telling him that I intended to publish my own investigations and inventions. I concluded by saying, "I wish to assure you that my intentions in publishing the results of work which is original with me are not to injure you, but merely to get whatever credit may be due me for original work."
Hammond still endeavored to keep a door open: a letter he wrote me on April 12, 1913, closed with yet another offer: "If I am still in wireless work after you complete your studies at the University I will always be glad to offer you a good position."
During 1913-16, I attended Purdue University, a rather advanced student in some subjects, but quite unconcerned with others. On Oct. 15, 1913, soon after I started college, I gave a paper before the Purdue University branch of the AIEE, describing the radio-controlled torpedo work that, together with an account of all known prior art, had been also the subject of my article in the Scientific American of July 20, 1912. (A description of the lecture appears in Proc. AIEE 33: 21-22, 1914.) In a later lecture, a fascinated student body and faculty watched a demonstration of my light-control methods, including the aforementioned "electric dog," which Hammond had loaned me for the purpose. This device created a great deal of interest and I was asked to give three more lectures on the same subject. One was given in Indianapolis, before the Purdue-Indianapolis section of the AIEE. The second lecture was given at the Chicago Electric Club, where I made expanded demonstrations that included my "electric thief catcher." The third one was for charity: a brief demonstration of the electric dog, of remote firing of a pistol by a light beam, etc., made at the Auditorium Opera House; as part an Associated Charities minstrel show sponsored by the public utilities companies of Chicago. The electric dog caught the public fancy and newspapers throughout the country reported on it.
This device had been originally constructed on the basis of a two-page letter containing a rough sketch from Hammond, dated March 2, 1912. Hammond had been much taken with the writings of Jacques Loeb, the famed Rockefeller Institute biologist, who had proposed various theories explaining many kinds of trophism—for example, why moths fly into flames. Hammond thought that an analog device could be embodied in a photoelectrically activated mechanical contrivance on wheels containing its own motive power and a steering device (a turning rear wheel). It was my job to translate this sketchy concept into a workable, demonstrable device, and I did so, with the able assistance of Lowenstein master mechanic, Joseph Broich.
Hammond's original proposal (Fig. 9) was based on two selenium cells "eyes" separated by an opaque screen, each operating a relay. The two
p38 BENJAMIN FRANKLIN MIESSNER
relays controlled currents (from separate batteries) used to energize two solenoids, pulling oppositely on a centrally and vertically pivoted arm on which a tricycle-like steering wheel was mounted at the back end of the contraption. Hammond showed the two front wheels geared to a propelling motor for the machine.
Hammond seemed untroubled by the fact that sensitive relays would be necessary for use with selenium cells and could not be used to control the current in the steering solenoids directly. Nor did he worry over the fact that an automobile-like differential was required for the drive wheels and that the two solenoids were always pulling against one another for mastery of the position of the steering wheel. He did show adjustable series resistances in each of the solenoid circuits, perhaps in a vague hope that their pulls could be somehow balanced for the dead-center position, with the light shining into both "eyes." Once again, a considerable amount of inventing on my part and design work by Broich was necessary to construct a workable device, which turned out to be quite different.
As I mentioned previously (see p. 16), even before receiving Hammond's suggestion, I had already made selectivity tests on my modulated-light ideas, and on March 11, 1912, I sketched out my plans for the orientation mechanism that would keep a torpedo's "eyes" always facing the controling searchlight (Fig. 10). Since those days, the principles involved have been, of course, widely applied for missiles of the homing type, as well as for remotely guided missiles; for automatic guidance of celestial photographic telescopes; and for satellite tracking. The fixedfrequency-modulated infrared signaling system has also been applied to "invisible fences" for intruder alarms around factories, banks, etc.
….
p39
fig. 10.—Notebook entry dated Mar. 11, 1912, showing my plan of an "orientation mechanism" for torpedo control. Central table rotates to keep "eyes" facing controling searchlight.

42 BENJAMIN FRANKLIN MIESSNER


AN EARLY TEXT ON RADIO CONTROL
While still an undergraduate, I published a book (Radiodynamics, D. Van Nostrand Co., New York, 1916) of 200 pages and containing 112 illustrations, in which most of the "preliminary work" that the HammondPurington paper so blithely passes over is described in some detail, together with an account of all earlier known work on the same subject. The book is something of a rarity now outside of libraries: only 1100 copies were printed. Hammond tried desperately to stop its publication, by intimidating the publishers and myself, and by appealing to the War Department on grounds of security. The publishers questioned me about the propriety of disclosing Hammond's "secrets," and in a letter to Charles E. Speirs of Van Nostrand I sought to reassure them.
Miessner to Speirs, Aug. 14, 1915:
As to the laboratory secrets of my former employer, I would be foolish in hazarding my own reputation and future career by revealing anything which I was not entitled to speak, and have limited my manuscript accordingly. Moreover, M(r). Hammond not only knew that I was to lecture and write along this line, but approved of the same and supplied me with both material, experimental apparatus [the "electric dog"] and photographs for this purpose. On this point he wrote me on Oct. 11, 1913: "You may mention any of the points which you recorded while working here. These matters are now obsolete and I do not believe that their disclosure would have much bearing on my work."
With my letter, I enclosed blueprints of two letters from Hammond relating to my proposed publications and confirming that he was aware of my plans and eager for me to describe and picture the early work in his laboratory during my time there.
I also wrote to Gen. Weaver, chief of U.S. Coast Artillery, to whom we had made our control demonstrations in late 1912, and offered to submit my manuscript to him for editing. General Weaver begged off, saying that he did not feel equal to the task, but he suggested that we should submit the manuscript to Hammond for possible deletions. In the meantime, Hammond wrote to Van Nostrand asking for permission to look at my manuscript and threatening suit if any of "his" details were made public.
EARLY HISTORY OF RADIO GUIDANCE 43
Accordingly, Hammond was invited to see the manuscript at the Van Nostrand offices in New York, an invitation that he accepted with alacrity. Speirs wrote me afterwards that Hammond had exhibited an "attitude which was rather imperative." Speirs himself felt that "whatever we do is more as a. matter of courtesy than right, and it is quite apparent to me from his letters to you that you have his permission to do precisely what you have done." Hammond wrote out a page of criticisms, which Speirs sent on to me, and which ended with another threat of legal action.
Hammond to Speirs, Feb. 26, 1916:
… I wish to state that my letter to Mr. Miessner authorized him to describe the work up to the time that his services ended with me at my laboratory. This he seems to have done fairly exhaustively. Any information which he may have been able to obtain later than that time concerning my work which he attempts to publish will be taken by me as grounds for legal suit, and I am confident that I shall have the backing of the government in the institution of such a suit.
I have shown this book to present-day experts and have been told that the only reason why it did not go beyond a single printing was that the material was far ahead of its day. It is interesting to note that the publishers' reader thought that my manuscript was well done, but felt that some of my statements might sound "over sanguine" to some readers. In the light of later developments in radio control and guidance, he need not have been so diffident.
I am almost certain that the reader who reviewed the book for Van Nostrand was none other than Nikola Tesla. Since I was planning to include descriptions and drawings of his pioneering efforts in the field of automatic control, I had written to him, only to find that he was already well acquainted with my project. We exchanged three letters in all, the first in September 1915. (The originals of his letters are in the Manuscript Division of the New York Public Library.)
Tesla to Miessner, Sept. 29, 1915:
Your favor of September 24th has been received in due course and has interested me in view of your forthcoming book on "Radio Dynamics". Some time ago my friend, Charles E. Speirs of the D. Van Nostrand Company, told me that you were engaged in its preparation and I commended it for publication as very little has been written on the subject …
I am naturally greatly absorbed in this field of invention which has been barely touched and which I look upon as extremely promising. In an article in the Century Magazine, copy of which I am forwarding to you, I have related the circumstances which led me to develop the idea of a self-propelled automaton. My experiments were begun sometime in '92 and from that period, on, until '95, in my Laboratory at 35 South Fifth Avenue, I exhibited a number of contrivances and perfected plans for several complete telautomata. After the destruction of. my Laboratory by fire in '95, there was an interruption in these labors which, however, were resumed in '96 in my new Laboratory at 46 East Houston Street where I made more striking demonstrations,
44 BENJAMIN FRANKLIN MIESSNER
in many instances actually transmitting the whole motive energy to the devices instead of simply controlling the same from distance. In '97 I began the construction of a complete automaton in the form of a boat, which is described in my original patent specification 013,809. A copy of this, also, is being forwarded under separate cover. This application was written during that year but the filing was delayed until July of the following year, long before which date the machine had been often exhibited to visitors who never ceased to wonder at the performances. The drawings of this specification were made from this machine to scale. In that year I also constructed a larger boat which I exhibited, among other things, in Chicago during a lecture before the Commercial Club. In this lecture I treated the whole field broadly, not limiting myself to mechanisms controlled from distance but to machines possessed of their own intelligence. Since that time I have advanced greatly in the evolution of the invention and think that the time is not distant when I shall show an automaton which, left to itself, will act as though possessed of reason and without any wilful control from the outside. Whatever be the practical possibilities of such an achievement, it will mark the beginning of a new epoch in mechanics.
I would call your attention to the fact that while my specification, above mentioned, shows the automatic mechanism as controlled through a simple tuned circuit, I have used individualized control; that is, one based on the co-operation of several circuits of different periods of vibration, a principle which I had already developed at that time and which was subsequently described in my patents #723,188 and 723,189 of March, 1903. The machine was in this form when I made demonstrations with it in 1898 before the Chief Examiner, Seeley, prior to the grant of my basic patent on Method of and Apparatus for Controlling Mechanisms at a Distance. [My italics.]
In my experiments and investigations in Colorado from 1899 to 1900, I developed, among other things, two important discoveries which will be essential in the future development of telautomatics. They are described in my patents #685,953 and 119,732 which were taken out at a later date. These two advances make it possible to supply to an automaton great amounts of energy and also to control it with the utmost accuracy when it is entirely out of sight and at any distance.
My book summarized the radio-control work done at the Hammond laboratory (mostly by myself) during the period preceding that covered by the Hammond-Purington paper.1 It is curious that neither the book nor any of my subsequent publications are referenced in that paper. ….
p58 BENJAMIN FRANKLIN MIESSNER
….
(2) The target-seeking feature for homing on enemy searchlights and the operative mechanism of the "electric dog" ( p. 1193) were devised and constructed under my direction while Hammond was attending the International Radiotelegraphic Conference in London in 1912.
…..

1941 – Sowbug – Tolman

Place marker.

E. C. Tolman, Discrimination vs. learning and the schematic sowbug, Psychol. Rev., 48, 1941, 367-382.

1934 – Endomechanic Vehicle – François Dussaud (Swiss/French)

François Dussaud is more famous for inventions around the phonograph and cinema. A Swiss inventor, born in Geneva (b. 1870 – d. 1953)  later lived in France. His patents are filed under the name of Charles François Dussaud.

dussaud3 1934 – Endomechanic Vehicle – François Dussaud (Swiss/French)

Note: The article below is from the French magazine Sciences & Vie 1938. It quotes 1938 for the endomechanical truck, but "La Nature" has the date as 1934.

Expériences d'informatique mécanique (« endomécanique ») de 1938 menées par M François Dussaud. Dussaud fit construire par la société SATME spécialisée dans le matériel ferroviaire un chariot « endomécanique » . Ce véhicule était piloté par un automate programmable utilisant deux bandes perforées constituant des « mémoires distinctes » (le terme « mémoire » est utilisé dans l'article de 1938. D'une certaine façon il y a confusion entre le support et la fonction,  il vaudrait mieux parler de programmes) qui se substituaient l'une à l'autre en fonction des informations fournies par le pare-choc et une cellule photo-électrique.
Cet « ordinateur » mécanique permettait de guider le véhicule en lui faisant contourner les obstacles imprévus. Il semble que l'une des bandes perforées ait contenu le programme de base permettant d'effectuer des actions prédéfinies (démarrer, avancer, klaxonner, reculer) alors que le deuxième rouleau contenait le programme d'évitement .
La technique endomécanique fut également appliquée à un canot testé sur le lac de Genève. L'article souligne que l'endomécanique est applicable à des torpilles, des chars ou des avions de reconnaissance.
L'endomécanique, cette informatique préhistorique est définie comme une « automaticité à long programme  qui exécute les manœuvres, non en fonction du temps qui passe  mais du chemin parcouru »

Source : Sciences & Vie 1938
Translation: 
Experiments with electromechanical computers (« endomécanique ») carried out in 1938 by Mr François Dussaud. Dussaud ordered from SATME, a company building railroad equipment) an « endomechanical » truck.
This vehicle was controlled by a programmable automaton using two separate perforated bands of paper constituting "separate memories" (the word "memory" is used in the 1938 text but in my opinion "program" would be more appropriate…although program must be stocked in a memory) which alternated according to information supplied by  the front bumper or a photo-electric sensor.
This true mechanical computer enabled the vehicle to follow a pre-determined path (the base program which enabled such functions as "start, stop, move away, move back, hoot") or upon sensing an obstacle to avoid it (using the alternate program).
Endomechanics were also applied to a boat tested on the Lake of Geneva. The 1938 article also points out  that endomechanics can be applied to torpedoes, tanks or recon aircraft.

Endomechanics as an early form of computer science was defined as " an extended-program automaticity which manoeuvres in function of the path encountered  and not in function of the time elapsed.

Source : Sciences & Vie 1938

Translation found here

 Photo's are from La Nature 1934

Untranslated article from La Nature: Machine translation gives enough info to understand it, but not fluent enough for me to publish. If any person out there fluent in English and French would like to offer a translation for me I will add to this post.

DU PHONOGRAPHE A L'ENDOMÉCANIQUE
 DEUX NOUVELLES APPLICATIONS DU PICK UP
CINÉMATOGRAPHE ET MÉCANOGRAPHE ÉLECTRIQUES

UNE INVENTION FRANÇAISE : LE PICK UP

Qui connaît l'origine du pick up, universellement utilisé aujourd'hui ? Pour les uns, il a été découvert peu à peu; pour les autres, il vient d'Amérique. C'est en 1896 que François Dussaud a présenté le pick up pour la première fois à une réunion de savants à la Sorbonne.

Le pick up se compose en principe d'un petit électro-

Fig. 2.   Cinématographe électrique enregistreur.

aimant du genre des bobinages des écouteurs téléphoniques devant les tôles duquel se trouve une.petite armature en fer à laquelle est fixée l'aiguille.

Lorsqu'on envoie un courant modulé dans l'électroaimant, il agit sur le fer doux qui vibre en s'éloignant et en se rapprochant des pôles de l'électro et communique ces vibrations à l'aiguille. L'aiguille enregistre alors une trace du courant dans une matière plastique.

Lorsque l'on fait repasser l'aiguille dans la trace ainsi obtenue, elle épouse les vibrations gravées dans la cire et reproduit les mêmes mouvements qu'elle possédait lors de 'l'enregistrement : elle les communique au fer doux qui, en vibrant, engendre par induction un courant dans l'électro. Ce courant reproduit le courant qui avait été envoyé dans l'électro.

 D'une façon générale, le pick up enregistre et reproduit
 les phénomènes électriques: l'inventeur du pick up avait
dit, en le présentant à la électriques,.  : On pourra conserver
les phénomènes électriques.
Il est bien évident que si l'on transforme en phénomènes électriques d'autres phénomènes vibratoires, le pick up pourra indirectement conserver ces phénomènes vibratoires.

La première application du pick up, née en même temps que lui, est trop connue pour que nous en reparlions

c'est le phonographe électrique. Les autres sont tout à fait récentes : ce sont la photographie et la cinématographie électriques d'une part, la mécanographie ou endomécanique de l'autre. Ainsi le pick up a été successivement appliqué à l'enregistrement et à la reproduction des phénomènes sonores, lumineux et .mécaniques.

I.   ENREGISTREMENT ET REPRODUCTION ÉLECTRIQUES DES PHÉNOMÈNES LUMINEUX

Pour photographier et pour cinématographier sans manipulation et avec vision immédiate des sujets fixes ou animés, Dussaud place les sujets devant un transmetteur de télévision et enregistre le courant créé par ce dernier au moyen d'un enregistreur électrique.

On sait, en effet, que l'image du sujet fixe ou animé est projetée, au moyen d'un système optique sur un disque explorateur. Ses différents points viennent successivement impressionner une cellule photoélectrique qui transforme cette énergie lumineuse en énergie électrique. C'est ce courant qu'enregistre le pick up. On reproduit le courant ainsi enregistré au moyen d'un reproducteur électrique et on envoie le courant créé par ce dernier dans un récepteur de télévision.

C'est en général une lampe au. néon, dont l'intensité lumineuse varie instantanément et proportionnellement au courant électrique reçu (c'est à dire de l'éclairement de la cellule photoélectrique exploratrice); cette lampe transforme donc l'énergie électrique reçue en énergie

Fig. 1.   Coupe d'un pick up e mélographe = Thorens.

lumineuse qui éclaire un disque récepteur tournant en synchronisme parfait avec le disque émetteur.

Ainsi, en remplaçant dans le phonographe électrique le microphone par un transmetteur de télévision et le hautparleur par un récepteur de télévision, on obtient un cinématographe électrique. Au lieu d'avoir ainsi un cinématographe électrique à la fois enregistreur et reproducteur on peut avoir

1° Un cinématographe électrique enregistreur comprenant un transmetteur de télévision et un enregistreur électrique;

20 Un cinématographe électrique reproducteur comprenant un reproducteur électrique et un récepteur de télévision.

Synchronisme.   Le problème du synchronisme, primordial en télévision, est réalisé de la façon suivante. Les deux appareils auront chacun.

a.) Le même rapport de vitesse entre leurs organes rotatifs de télévision et leur plateau porte disques;

b) Des repères assurant toujours la même position des disques sur le plateau et le même point de départ des pick up enregistreurs et reproducteurs. On va tenter à ce propos de réaliser une entente entre tous les pays pour que les disques enregistrés dans l'un d'eux puissent être entendus dans tous les autres.

Le cinéma parlant chez soi.   Le cinématographe électrique commence à se répandre parmi les possesseurs de récepteurs de télévision. La première application du cinématographe électrique est naturellement celle qui consiste à enregistrer les images reçues par télévision. sans fil pour pouvoir les reproduire à volonté. Et le succès de cette application est d'autant plus grand que l'on peut, au moyen d'un même disque, enregistrer puis reproduire synchroniquement ce que l'on entend au poste de T. S. F. et ce que l'on voit au poste de télévision. C'est le cinéma parlant à la portée de tous, sans aucun apprentissage, sans manipulation et avec reproduction immédiate. Tout indique que l'industrie du cinématographe électrique doive connaître l'immense succès de l'industrie du phonographe électrique.

Le jeudi 22 décembre 1932, à l'Aula de l'Université de Genève, ont eu lieu des démonstrations publiques de télévision enregistrée. Les expériences étaient compliquées du fait qu'il n'y a pas en Suisse de poste émetteur de télévision et que par conséquent on dut utiliser un enregistrement d'émissions londoniennes données sur 30 lignes, alors que l'appareil reproducteur était construit pour 60; de plus Londres émet des lignes verticales et l'appareil doit recevoir des lignes horizontale. Les reproductions étaient couchées et difficiles à voir. On peut néanmoins se rendre un compte exact. de la manière dont les lignes lumineuses modulées étaient reproduites au moyen d'un disque et du mélographe.
II.   ENREGISTREMENT ET REPRODUCTION ÉLECTRIQUES DES PHÉNOMÈNES MÉCANIQUES

Enfin eut lieu une expérience très curieuse prouvant que le pick up est capable d'enregistrer des phénomènes mécaniques. Elle consistait à commander par disque une aiguille tournant sur un cadran. A l'enregistrement, les

Fig. 3.   Cinématographe électrique reproducteur.

mouvements du levier de commande avaient été traduits en courant électrique correspondant à l'amplitude desdits mouvements et aux intervalles de temps qui les séparent et le pick up avait gravé sur le disque une trace correspondant à ce courant et par conséquent aux mouvements du levier de commande.

Dans une séance effectuée au Lyceum en février 1934,

Fig. 4.   Expérience d'endomécanique avec un petit chemin de fer
électrique.
(Le disque qui devrait être sur le train même est ici endehors, mais
le principe est le même: le train s'arrête en marche selon les commandes
du disque.)
on a fait marcher un petit train électrique commandé par un disque. Le 4 avril, Dussaud faisait une communication à l'Académie des Sciences sur cette nouvelle invention. Peu après dans la cour de l'Institut, on vit évoluer un véhicule non monté.

Endomécanique.   On peut nommer endomécanique, par opposition à la télémécanique, la commande soit d'une machine fixe ou mobile, soit d'un ensemble dé travaux, à l'intérieur même de cette machine ou de l'ensemble de ces travaux au moyen d'un mécanographe électrique.

Application à un véhicule non monté.   Soit le cas d'un tank non monté que nous voulons, par l'endomécanique, faire partir d'un lieu A, puis passer par les lieux B et C et revenir en A. On relie sur la carte les lieux A, B, C, A par des traits, on mesure les longueurs et les angles successifs que font ces traits. Connaissant par expérience de quels angles il faut tourner le levier de direction du tank pour obtenir les changements d'orientation nécessaires, on produit avec deux a traducteurs » deux séries de courants correspondant aux angles mesurés, chaque série étant relative à l'un des sens de rotation. Ces deux séries de courants sont enregistrées concentriquement sur un ou plusieurs disques à remplacement automatique. En produisant les deux séries de courants, on a bien entendu laissé entre chacun de ceux ci un temps proportionnel à l'espace à parcourir dans une même direction. On peut raccourcir considérablement le temps de cet enregistrement de disque, il suffit de faire tourner les disques beaucoup plus vite lors de leur enregistrement que lors de leur reproduction.

Les disques ainsi enregistrés sont placés sur le mécanographe électrique reproducteur qui se trouve à l'intérieur du tank, deux pick up électromagnétiques repro¬

Fig. 5.    lin véhicule à commande endomécanique évoluant dans la
roue de l'Institut (ph. w. Gillett).

duisent respectivement l'une et l'autre des deux séries de courants enregistrées.

Ces deux séries de courants sont envoyées dans un moteur électrique à mise en marche et à arrêt instantanés d'où elles agissent respectivement par l'intermédiaire d'une démultiplication sur le levier de direction du tank pour que celui ci parte successivement du point A, passe par les points B et C et revienne en A.

On peut suspendre le mécanographe reproducteur à la cardan et empêcher l'aiguille de quitter son sillon par un guide spécial à ressort, quels que soient les cahots ou la position du tank.

Un second mécanographe enregistreur et reproducteur permet d'assurer des arrêts et des départs à volonté au cours de la marche du tank.

Un troisième mécanographe enregistreur et reproducteur assure la commande de mitrailleuse ou de toute autre arme ainsi que le jet ou la pose de tout engin, aux moments choisis, pendant tout le trajet du tank.

En un mot, toutes les commandes sont données au tank du dedans (d'où leur nom d'endocommandes) suivant un plan prédéterminé et secret.

Si, au lieu d'un tank, il s'agissait d'un véhicule ayant besoin de se déplacer dans le plan vertical (sous marin, avion, hydravion, hélicoptère, torpille, fusée), le mécanographe enregistreur et reproducteur assurerait le fonctionnement du levier de commande relatif au plan vertical.
Endocommande par ruban.   Dans l'expérience faite à l'Institut, l'endocommande ne s'est pas faite par disques, mais par un ruban non conducteur de l'électricité qui se déroule d'une première bobine, passe sur un cylindre conducteur de l'électricité et va s'enrouler sur une seconde bobine. Une série de manipulateurs, placés chacun dans le circuit d'un courant auxiliaire alimentant un pick up à stylet acéré, permet d'exécuter simultanément sur ce ruban de papier des sillons perforés parallèles. Pour l'enregistrement des disques de phonographe, le stylet du pick up traduisait d'une manière mécanique la modulation du courant émanant du microphone. Pour la confection des bandes porteuses d'ordres, en endomécanique, le courant qui parcourt le bobinage du pick up n'est pas modulé, mais il est rendu intermittent par le jeu des manipulateurs, et c'est cette intermittence voulue qui se trouve enregistrée mécaniquement sur la bande de papier.

Suivant le degré de complication des ordres à inscrire, il y a plus ou moins de manipulateurs et de pickup.

Pour exécuter les ordres ainsi enregistrés sur le ruban, Dussaud remplace le stylet tranchant des pick up par un balai en cuivre. Chaque fois que l'un de ces balais, du fait d'une perforation, se trouve en contact avec le cylindre bon conducteur, un circuit se ferme, le courant passe dans le bobinage du pick up, qui fait aussitôt son métier de relais dans le sens déterminé. Le courant électrique de commandement, celui qui excite les électroaimants des pick up est de faible intensité : trois dixièmes d'ampère; mais le courant d'exécution peut être de l'intensité nécessaire au travail demandé.
APPLICATIONS DE L'ENDOMÉCANIQUE

On pourra enregistrer et reproduire par le mécanographe électrique les mouvements de tous les organes de commande nécessaires, soit à une machine, soit à un ensemble de travaux scientifiques ou industriels, de besognes domestiques, de traitement médical électrique ou vibratoire.

On pourra de même enregistrer et reproduire les mouvements de tous les organes de commande relatifs à des jeux artistiques d'eau, de lumière ou de sonorité, à des gestes d'automates, à des programmes civils ou autres d'explosions, d'allumage de feux, d'inondations, de jets de substances, de tirs…

Tout véhicule non monté peut, avec l'endomécanique, être utilisé aux buts les plus divers : études scientifiques des milieux atmosphériques ou marins, si ces véhicules sont munis des appareils usuels d'enregistrement automatique des différents phénomènes; lors de missions périlleuses, telle celle d'un capot de sauvetage entouré de bouées et auquel l'état de la mer interdit la présence d'un équipage, l'endomécanique permettra d'épargner des vies humaines.

Ces mêmes véhicules pourront servir aussi à l'art militaire dans certains cas, par exemple attirer l'ennemi sur un point tandis qu'on opère sur un autre; créer une zone de protection par fumée, gaz, fracas assourdissant, auto mitrailleuse, etc.

Enfin, l'endomécanique semble avoir son application tout indiquée dans la calme voie stratosphérique accessible aux avions munis de turbo compresseurs; elle permettrait par exemple de faire le service postal EuropeAmérique en deux heures environ avec des véhicules non montés, munis des plus récents modèles automatiques de stabilisateur en plein vol, d'ouvreurs de parachute protégeant l'avion lui même, de sirènes avertisseuses du retour au sol et d'atterrisseurs.

Conclusions.   Ainsi le pick up permet d'une façon générale de reproduire tout phénomène vibratoire que l'on sait traduire en phénomène électrique.

Ce ne sont pas les modulations sonores ou lumineuses qui s'enregistrent dans notre mémoire. Ces modulations

Fig. 6.   Le mécanisme de la commande endomécanique du véhicule
de la figure 5.

A gauche :la bande enregistrée qui commande le système et fait
évoluer le véhicule (ph. W. Gillett).

sont traduites en modulations nerveuses analogues aux modulations électriques. Ces modulations nerveuses s'enregistrent dans les centres nerveux pour se traduire à notre volonté en modulations auditives ou visuelles.

Ainsi il se passe quelque chose d'analogue avec les modulations électriques. Il y a intérêt, semble t il, à traduire tous les phénomènes vibratoires en phénomènes électriques, l'électricité ayant une puissance et une perfectibilité illimitées.

De même que la télégraphie sans fil a rendu l'humanité victorieuse de l'espace, le pick up l'a rendue victorieuse du temps.

Si notre génération a immédiatement et pleinement profité de la sans fil parce que sa mission est de relier tous les hommes vivants au même moment, malgré l'espace qui les sépare, elle ne peut apprécier complètement le pick up, qui permettra, en < conservant les phénomènes vibratoires u, de relier à travers le temps les hommes de générations différentes.

JEAN HESSE.

Dussaud was able to control the motion of this model electric train using sound recording on the photograph record, effectively what we would call a 'program' today.


More related French articles requiring fluent translation:

DU PHONOGRAPHE A L'ENDOMÉCANIQUE
DEUX NOUVELLES APPLICATIONS DU PICK UP
CINÉMATOGRAPHE ET MÉCANOGRAPHE ÉLECTRIQUES

UNE INVENTION FRANÇAISE : LE PICK UP

Qui connaît l'origine du pick up, universellement utilisé aujourd'hui ? Pour les uns, il a été découvert peu à peu; pour les autres, il vient d'Amérique. C'est en 1896 que François Dussaud a présenté le pick up pour la première fois à une réunion de savants à la Sorbonne.

Le pick up se compose en principe d'un petit électro-

Fig. 2.   Cinématographe électrique enregistreur.

aimant du genre des bobinages des écouteurs téléphoniques devant les tôles duquel se trouve une.petite armature en fer à laquelle est fixée l'aiguille.

Lorsqu'on envoie un courant modulé dans l'électroaimant, il agit sur le fer doux qui vibre en s'éloignant et en se rapprochant des pôles de l'électro et communique ces vibrations à l'aiguille. L'aiguille enregistre alors une trace du courant dans une matière plastique.

Lorsque l'on fait repasser l'aiguille dans la trace ainsi obtenue, elle épouse les vibrations gravées dans la cire et reproduit les mêmes mouvements qu'elle possédait lors de 'l'enregistrement : elle les communique au fer doux qui, en vibrant, engendre par induction un courant dans l'électro. Ce courant reproduit le courant qui avait été envoyé dans l'électro.

 D'une façon générale, le pick up enregistre et reproduit
 les phénomènes électriques: l'inventeur du pick up avait
dit, en le présentant à la électriques,.  : On pourra conserver
les phénomènes électriques.
Il est bien évident que si l'on transforme en phénomènes électriques d'autres phénomènes vibratoires, le pick up pourra indirectement conserver ces phénomènes vibratoires.

La première application du pick up, née en même temps que lui, est trop connue pour que nous en reparlions

c'est le phonographe électrique. Les autres sont tout à fait récentes : ce sont la photographie et la cinématographie électriques d'une part, la mécanographie ou endomécanique de l'autre. Ainsi le pick up a été successivement appliqué à l'enregistrement et à la reproduction des phénomènes sonores, lumineux et .mécaniques.

I.   ENREGISTREMENT ET REPRODUCTION ÉLECTRIQUES DES PHÉNOMÈNES LUMINEUX

Pour photographier et pour cinématographier sans manipulation et avec vision immédiate des sujets fixes ou animés, Dussaud place les sujets devant un transmetteur de télévision et enregistre le courant créé par ce dernier au moyen d'un enregistreur électrique.

On sait, en effet, que l'image du sujet fixe ou animé est projetée, au moyen d'un système optique sur un disque explorateur. Ses différents points viennent successivement impressionner une cellule photoélectrique qui transforme cette énergie lumineuse en énergie électrique. C'est ce courant qu'enregistre le pick up. On reproduit le courant ainsi enregistré au moyen d'un reproducteur électrique et on envoie le courant créé par ce dernier dans un récepteur de télévision.

C'est en général une lampe au. néon, dont l'intensité lumineuse varie instantanément et proportionnellement au courant électrique reçu (c'est à dire de l'éclairement de la cellule photoélectrique exploratrice); cette lampe transforme donc l'énergie électrique reçue en énergie

Fig. 1.   Coupe d'un pick up e mélographe = Thorens.

lumineuse qui éclaire un disque récepteur tournant en synchronisme parfait avec le disque émetteur.

Ainsi, en remplaçant dans le phonographe électrique le microphone par un transmetteur de télévision et le hautparleur par un récepteur de télévision, on obtient un cinématographe électrique. Au lieu d'avoir ainsi un cinématographe électrique à la fois enregistreur et reproducteur on peut avoir

1° Un cinématographe électrique enregistreur comprenant un transmetteur de télévision et un enregistreur électrique;

20 Un cinématographe électrique reproducteur comprenant un reproducteur électrique et un récepteur de télévision.

Synchronisme.   Le problème du synchronisme, primordial en télévision, est réalisé de la façon suivante. Les deux appareils auront chacun.

a.) Le même rapport de vitesse entre leurs organes rotatifs de télévision et leur plateau porte disques;

b) Des repères assurant toujours la même position des disques sur le plateau et le même point de départ des pick up enregistreurs et reproducteurs. On va tenter à ce propos de réaliser une entente entre tous les pays pour que les disques enregistrés dans l'un d'eux puissent être entendus dans tous les autres.

Le cinéma parlant chez soi.   Le cinématographe électrique commence à se répandre parmi les possesseurs de récepteurs de télévision. La première application du cinématographe électrique est naturellement celle qui consiste à enregistrer les images reçues par télévision. sans fil pour pouvoir les reproduire à volonté. Et le succès de cette application est d'autant plus grand que l'on peut, au moyen d'un même disque, enregistrer puis reproduire synchroniquement ce que l'on entend au poste de T. S. F. et ce que l'on voit au poste de télévision. C'est le cinéma parlant à la portée de tous, sans aucun apprentissage, sans manipulation et avec reproduction immédiate. Tout indique que l'industrie du cinématographe électrique doive connaître l'immense succès de l'industrie du phonographe électrique.

Le jeudi 22 décembre 1932, à l'Aula de l'Université de Genève, ont eu lieu des démonstrations publiques de télévision enregistrée. Les expériences étaient compliquées du fait qu'il n'y a pas en Suisse de poste émetteur de télévision et que par conséquent on dut utiliser un enregistrement d'émissions londoniennes données sur 30 lignes, alors que l'appareil reproducteur était construit pour 60; de plus Londres émet des lignes verticales et l'appareil doit recevoir des lignes horizontale. Les reproductions étaient couchées et difficiles à voir. On peut néanmoins se rendre un compte exact. de la manière dont les lignes lumineuses modulées étaient reproduites au moyen d'un disque et du mélographe.
II.   ENREGISTREMENT ET REPRODUCTION ÉLECTRIQUES DES PHÉNOMÈNES MÉCANIQUES

Enfin eut lieu une expérience très curieuse prouvant que le pick up est capable d'enregistrer des phénomènes mécaniques. Elle consistait à commander par disque une aiguille tournant sur un cadran. A l'enregistrement, les

Fig. 3.   Cinématographe électrique reproducteur.

mouvements du levier de commande avaient été traduits en courant électrique correspondant à l'amplitude desdits mouvements et aux intervalles de temps qui les séparent et le pick up avait gravé sur le disque une trace correspondant à ce courant et par conséquent aux mouvements du levier de commande.

Dans une séance effectuée au Lyceum en février 1934,

Fig. 4.   Expérience d'endomécanique avec un petit chemin de fer
électrique.
(Le disque qui devrait être sur le train même est ici endehors, mais
le principe est le même: le train s'arrête en marche selon les commandes
du disque.)
on a fait marcher un petit train électrique commandé par un disque. Le 4 avril, Dussaud faisait une communication à l'Académie des Sciences sur cette nouvelle invention. Peu après dans la cour de l'Institut, on vit évoluer un véhicule non monté.

Endomécanique.   On peut nommer endomécanique, par opposition à la télémécanique, la commande soit d'une machine fixe ou mobile, soit d'un ensemble dé travaux, à l'intérieur même de cette machine ou de l'ensemble de ces travaux au moyen d'un mécanographe électrique.

Application à un véhicule non monté.   Soit le cas d'un tank non monté que nous voulons, par l'endomécanique, faire partir d'un lieu A, puis passer par les lieux B et C et revenir en A. On relie sur la carte les lieux A, B, C, A par des traits, on mesure les longueurs et les angles successifs que font ces traits. Connaissant par expérience de quels angles il faut tourner le levier de direction du tank pour obtenir les changements d'orientation nécessaires, on produit avec deux a traducteurs » deux séries de courants correspondant aux angles mesurés, chaque série étant relative à l'un des sens de rotation. Ces deux séries de courants sont enregistrées concentriquement sur un ou plusieurs disques à remplacement automatique. En produisant les deux séries de courants, on a bien entendu laissé entre chacun de ceux ci un temps proportionnel à l'espace à parcourir dans une même direction. On peut raccourcir considérablement le temps de cet enregistrement de disque, il suffit de faire tourner les disques beaucoup plus vite lors de leur enregistrement que lors de leur reproduction.

Les disques ainsi enregistrés sont placés sur le mécanographe électrique reproducteur qui se trouve à l'intérieur du tank, deux pick up électromagnétiques repro¬

Fig. 5.    lin véhicule à commande endomécanique évoluant dans la
roue de l'Institut (ph. w. Gillett).

duisent respectivement l'une et l'autre des deux séries de courants enregistrées.

Ces deux séries de courants sont envoyées dans un moteur électrique à mise en marche et à arrêt instantanés d'où elles agissent respectivement par l'intermédiaire d'une démultiplication sur le levier de direction du tank pour que celui ci parte successivement du point A, passe par les points B et C et revienne en A.

On peut suspendre le mécanographe reproducteur à la cardan et empêcher l'aiguille de quitter son sillon par un guide spécial à ressort, quels que soient les cahots ou la position du tank.

Un second mécanographe enregistreur et reproducteur permet d'assurer des arrêts et des départs à volonté au cours de la marche du tank.

Un troisième mécanographe enregistreur et reproducteur assure la commande de mitrailleuse ou de toute autre arme ainsi que le jet ou la pose de tout engin, aux moments choisis, pendant tout le trajet du tank.

En un mot, toutes les commandes sont données au tank du dedans (d'où leur nom d'endocommandes) suivant un plan prédéterminé et secret.

Si, au lieu d'un tank, il s'agissait d'un véhicule ayant besoin de se déplacer dans le plan vertical (sous marin, avion, hydravion, hélicoptère, torpille, fusée), le mécanographe enregistreur et reproducteur assurerait le fonctionnement du levier de commande relatif au plan vertical.
Endocommande par ruban.   Dans l'expérience faite à l'Institut, l'endocommande ne s'est pas faite par disques, mais par un ruban non conducteur de l'électricité qui se déroule d'une première bobine, passe sur un cylindre conducteur de l'électricité et va s'enrouler sur une seconde bobine. Une série de manipulateurs, placés chacun dans le circuit d'un courant auxiliaire alimentant un pick up à stylet acéré, permet d'exécuter simultanément sur ce ruban de papier des sillons perforés parallèles. Pour l'enregistrement des disques de phonographe, le stylet du pick up traduisait d'une manière mécanique la modulation du courant émanant du microphone. Pour la confection des bandes porteuses d'ordres, en endomécanique, le courant qui parcourt le bobinage du pick up n'est pas modulé, mais il est rendu intermittent par le jeu des manipulateurs, et c'est cette intermittence voulue qui se trouve enregistrée mécaniquement sur la bande de papier.

Suivant le degré de complication des ordres à inscrire, il y a plus ou moins de manipulateurs et de pickup.

Pour exécuter les ordres ainsi enregistrés sur le ruban, Dussaud remplace le stylet tranchant des pick up par un balai en cuivre. Chaque fois que l'un de ces balais, du fait d'une perforation, se trouve en contact avec le cylindre bon conducteur, un circuit se ferme, le courant passe dans le bobinage du pick up, qui fait aussitôt son métier de relais dans le sens déterminé. Le courant électrique de commandement, celui qui excite les électroaimants des pick up est de faible intensité : trois dixièmes d'ampère; mais le courant d'exécution peut être de l'intensité nécessaire au travail demandé.
APPLICATIONS DE L'ENDOMÉCANIQUE

On pourra enregistrer et reproduire par le mécanographe électrique les mouvements de tous les organes de commande nécessaires, soit à une machine, soit à un ensemble de travaux scientifiques ou industriels, de besognes domestiques, de traitement médical électrique ou vibratoire.

On pourra de même enregistrer et reproduire les mouvements de tous les organes de commande relatifs à des jeux artistiques d'eau, de lumière ou de sonorité, à des gestes d'automates, à des programmes civils ou autres d'explosions, d'allumage de feux, d'inondations, de jets de substances, de tirs…

Tout véhicule non monté peut, avec l'endomécanique, être utilisé aux buts les plus divers : études scientifiques des milieux atmosphériques ou marins, si ces véhicules sont munis des appareils usuels d'enregistrement automatique des différents phénomènes; lors de missions périlleuses, telle celle d'un capot de sauvetage entouré de bouées et auquel l'état de la mer interdit la présence d'un équipage, l'endomécanique permettra d'épargner des vies humaines.

Ces mêmes véhicules pourront servir aussi à l'art militaire dans certains cas, par exemple attirer l'ennemi sur un point tandis qu'on opère sur un autre; créer une zone de protection par fumée, gaz, fracas assourdissant, auto mitrailleuse, etc.

Enfin, l'endomécanique semble avoir son application tout indiquée dans la calme voie stratosphérique accessible aux avions munis de turbo compresseurs; elle permettrait par exemple de faire le service postal EuropeAmérique en deux heures environ avec des véhicules non montés, munis des plus récents modèles automatiques de stabilisateur en plein vol, d'ouvreurs de parachute protégeant l'avion lui même, de sirènes avertisseuses du retour au sol et d'atterrisseurs.

Conclusions.   Ainsi le pick up permet d'une façon générale de reproduire tout phénomène vibratoire que l'on sait traduire en phénomène électrique.

Ce ne sont pas les modulations sonores ou lumineuses qui s'enregistrent dans notre mémoire. Ces modulations

Fig. 6.   Le mécanisme de la commande endomécanique du véhicule
de la figure 5.

A gauche :la bande enregistrée qui commande le système et fait
évoluer le véhicule (ph. W. Gillett).

sont traduites en modulations nerveuses analogues aux modulations électriques. Ces modulations nerveuses s'enregistrent dans les centres nerveux pour se traduire à notre volonté en modulations auditives ou visuelles.

Ainsi il se passe quelque chose d'analogue avec les modulations électriques. Il y a intérêt, semble t il, à traduire tous les phénomènes vibratoires en phénomènes électriques, l'électricité ayant une puissance et une perfectibilité illimitées.

De même que la télégraphie sans fil a rendu l'humanité victorieuse de l'espace, le pick up l'a rendue victorieuse du temps.

Si notre génération a immédiatement et pleinement profité de la sans fil parce que sa mission est de relier tous les hommes vivants au même moment, malgré l'espace qui les sépare, elle ne peut apprécier complètement le pick up, qui permettra, en < conservant les phénomènes vibratoires u, de relier à travers le temps les hommes de générations différentes.

JEAN HESSE.


Automates et Automatisme

Par Pierre Devaux 1941

L'AUTOMATISME
les machines outils : on a construit des machines à tailler les engrenages de croiseurs, conduites par un automate qui intervient pour corriger le réglage dès que l'erreur de taille atteint 1/100 de millimètre ! II peut exister une « cascade » d'imprévus successifs auxquels l'automate doit être à même de faire face; ainsi, l'automate du phare de Nividic allume un feu de secours à gaz d'huile si le filament de sa lampe électrique vient à brûler, il met en marche sa sirène par temps de brume et allume le canon de brume si la sirène cesse de fonctionner.

Une émeute à l'Académie des Sciences !

Le 4 avril 1934, date mémorable dans l'histoire des sciences, un étrange spectacle attirait les académiciens dans la cour de l'Institut. Devant la vénérable Compagnie, un inventeur suisse, M. François Dussaud faisait évoluer son premier « véhicule endomécanique », disons plus familièrement son premier chariot sans conducteur.

Ledit chariot, semblable en apparence à tous les chariots à accumulateurs en usage, pour la manutention, dans les usines, lança un coup de klaxon vigoureux, démarra, prit sa vitesse, évolua adroitement pour éviter les obstacles, s'arrêta pile au moment de heurter un mur, fit marche arrière, manouvra pour repartir, fila bon train, alluma ses phares et s'arrêta. Cette démonstration ayant paru suffisante, les académiciens demandèrent à voir le secret de l'automate ; le mystère se réduisait à une modeste bande de papier perforée, analogue à la bande d'un orgue de Barbarie, qui défilait entre des contacts et une brosse métallique ; toutes les fois qu'une perforation se présente, le courant passe ; c'est le principe du classique journal « lumineux », cher aux badauds parisiens ; mais ici, au lieu de se borner à allumer des lampes, le courant faisait fonctionner des « relais » à électro aimants qui se chargeaient à leur tour de commander le moteur principal et des moteurs auxiliaires agissant sur la direction et les freins.

Le principe était donc absolument général. La docte Compagnie, toutefois, éleva des objections

on fit observer que s'il était certes beau de contourner des maçonneries, un obstacle inopiné, non prévu par la bande perforée, mettrait à la carrière du véhicule un brusque point final ; un académicien décidé offrit de se placer devant le chariot pour démontrer que la machine lui passerait sur le corps… Bref, l'Académie, sans celer son estime, se déclara insuffisamment satisfaite de l' « automatisme fatal » tel que l'avait conçu M. François Dussaud.

L'inventeur ne se tint pas pour battu, et quelques mois plus tard, les Genevois baguenaudant sur le pont du mont Blanc eurent le régal d'un spectacle scientifique plus perfectionné… Sur l'eau bleue du Léman, une embarcation mécanique, prudemment équipée d'un pare choc et cerclée d'une ceinture en caoutchouc, s'élançait entre deux gerbes d'écume ; un canot, monté par deux jeunes gens qui faisaient force de rames, vint se placer en travers : après un « Bang! » émouvant qui se répercuta dans toutes les poitrines, on vit l'embarcation automatique battre résolument en arrière, décrire autour de l'obstacle un vaste demi cercle et reprendre impeccablement sa direction primitive.

Ce résultat admirable, ou du moins prometteur, avait été obtenu avec une simplicité remarquable (fig. 6). A la « mémoire » principale, en papier perforé était adjointe une mémoire auxiliaire, montée dans un appareil analogue; cette seconde mémoire, beaucoup plus courte, correspondait à une brève marche arrière suivie d'une manouvre en demi cercle et d'un redressement soigneusement axé sur le cap initial. Le recul du pare choc, heurtant

Fig. 6.   Substitution des « mémoires »
dans l'embarcation automatique
de M. François Dussaud

Le recul du pare choc, heurtant un obstacle, fait fonctionner un contact qui a pour effet e substituer la K mémoire de manouvre n, n" 2, à la mémoire principale. Celle ci sera remise en circuit à la fin de la manoeuvre.

un obstacle, produisait l'échange des mémoires, la mémoire principale reprenant son rôle à l'issue de la manouvre d'évitement. Ainsi, un pilote de port, familier des chenaux, guide un navire sur les atterrages, puis rend la barre à son collègue de haute mer.

Voici les robots à « mémoire perforée »

La solution du pare choc est évidemment rustique, mais les ressources de la technique moderne permettraient de lui substituer des « antennes H plus subtiles : oeils électriques en montage à longue portée (pétoscope), réflexions d'infra sons, réflexions d'ondes courtes, permettant à l'automate de percevoir à distance les obstacles, pour les éviter… ou au contraire pour se ruer dans leur direction ! On peut concevoir des avions, des fusées, des hélicoptères montant dans la stratosphère, des sous marins descendant dans les fosses océaniques, apportant, grâce à leurs appareils enregistreurs, une ample moisson de renseignements scientifiques.

Moins pacifiquement, on imagine des tanks sans conducteur, des avions endomécaniques allant porter intrépidement chez l'ennemi la dévastation et la mort, des torpilles embouquant avec précision les sinuosités d'un chenal, évitant les roches submergées, visant aux coques métalliques, allant détruire une flotte au mouillage. Mais la classique torpille de marine, avec son moteur à air comprimé réchauffé, son stabilisateur de direction à gyroscope, son régulateur d'immersion à piston hydrostatique et à pendule, ne représente t elle pas une admirable réussite de l' « automatisme à discernement » ?

Remarquons, pour être complet, que pour que nous reconnaissions un véritable automatisme dans un mécanisme à décisions variables, il faut que ces décisions soient basées sur une grandeur différente de celle sur laquelle on veut agir. Nous ne prétendons pas qu'un ressort est automatique sous prétexte qu'il réagit sous notre main; nous ne le disons pas non plus d'un modérateur à ailettes   organe régulateur très répandu dans la construction des automates à ressort, des remontoirs d'égalité, des boites à musique, des sonneries d'horloges   car il s'oppose directement aux emballements par la résis¬tance de l'air. Mais nous le disons sans hésiter du régulateur à boules, qui s'appuie sur la subtile force centrifuge. Dans le domaine électrotechnique, le « fusible » nous apparaît comme une localisation de la « susceptibilité thermique » du circuit, tandis que le disjoncteur, fondé sur les lois de l'électromagné¬tisme, est au contraire un élégant exemple d'automate… C'est cette coïncidence, cette convergence des intentions qui nous frappe, et à juste titre: car elle est précisément la marque de l'intelligence créatrice, ostensiblement manifestée à chaque fonctionnement des appareils.


[Add patents here]