Archive for April, 2010

1954 – Maze-Solving Machine – J. A. Deutsch (British)

Anthony Deutsch, aged 26, with his maze runner from Oxford University's Institute of  Experimental Psychology.

The head-lamp on the trolley is turned on, and various photo-electric cells are mounted at strategic points in the maze.





Deutsch's Maze runner was considered the most sophisticated at the time. It was capable of transferring its training from one maze to another which is topologically equivalent even though its lengths and shapes have been altered. Deutsch's maze-runner also takes advantage of short cuts added to the maze. (from Martin Gardner 1961)

The system consisted of six uniselectors and twenty-three relays. The uniselectors have six wipers each, and are ordinary Post Office (P.O.) equipment. Only three positions are employed on each. The relays are similarly large P.O. relays with four "make" and one "break" contact.

Deutsch, J.A. "The Insightful Learning Machine", Discovery 16:12 1955 pp 514-517. pdf  here

Deutsch, J.A. "A Machine with Insight", Quarterly Journal of Experimental Psychology Vol.6 part I pp 6-11.  pdf here.

See other early Maze Solving Machines & Robots here.

Tags: , , , , , ,

1937 – Maze Solver – Hugh Bradner (American)

The above is an excerpt from Cordeshi's book "Discovery of the Artificial".

Hugh Bradner was at the Psychology laboratory at the University of Miami, Ohio. His robot learnt by trial and error. The cart was 12 inches long, 6 inches wide with 2 wheels on a front axle. a driving wheel in the middle, and a steering wheel located near the rear.

H. Bradner, A new mechanical "learner," Journal of General Psychology, 1937 17: pp414-419

Tags: , , , ,

1952 – “Theseus” Maze-Solving Mouse – Claude Shannon (American)

Internals showing N-S, E-W carriage, Relays, Uni-selector, motors, amongst other electrical components. 

See 18 mins 51 secs in for 27 seconds.

See 9 mins 16 secs in for 32 seconds.

As the 1952 maze solver was recently at the MIT Museum.

Picture from Life Magazine 28 July 1952. Top trace is showing the first pass of the maze solver learning the maze. The second run showing that it has learnt the maze and the mouse goes direct to the cheese.

Detail of a trace showing to mouse rotations and making contact with the wall.

Picture above from Popular Science March 1952 showing another pair of  time-lapse photos showing the learning of the maze in the first run, and the solving of the maze.  A modified mouse is also shown. It included a lamp to ensure a trace showed in the time-lapse photography. Full pdf here.

The above maze photograph from Electrical Engineering July 1952. It took two minutes to learn the maze, and between 12-15 seconds to reach the "cheese" once solved.

Problem-Solving Electric Mouse Aids in Improved Telephone Equipment Research

An electric mouse with a man-made super-memory is busily at work these days, repeatedly threading its way through a series of complicated mazes at Bell Telephone Laboratories. The handiwork of Dr. C. E. Shannon, a mathematician associated with the Bell Telephone Laboratories, Inc., the mouse uses for its "brain" some of the same kind of switching relays found in dial telephone systems. The reason it exists is to provide fundamental knowledge which will help improve telephone service.
The mouse, in reality a 2-inch bar magnet with three wheels and copper whiskers, can solve quickly more than a million million different mazes, learning each new one rapidly, then instantly forgetting it in order to be ready to learn the next one. Its goal is an electric terminal with a bell which rings when the mouse nudges it with its copper whiskers.
The maze is about half the size of a desk top. It has aluminum fences which can be rearranged at will in 40 different slots to create the hardest possible problems for the mouse. The mouse is placed at some arbitrary point in the maze and the goal at a different arbitrary point. After a brief pause to get its bearings, the mouse goes up and down corridors, bumping into walls, backing up and turning, and exploring until, a minute or two later, it reaches its goal and rings the bell.
Having learned the correct path to the goal, the mouse now can be set down at any point that it visited during its explorations and, without making a single false move, it will proceed directly to the goal in 12 to 15 seconds. If it is placed in a part of the maze not previously visited, it will explore until it reaches a known part and then move directly to the goal.
After this, if the maze is altered, the mouse will have to learn the new paths by further exploration, but it readily will remember those parts of the path which remain unchanged.
This is the way the mouse works. When it is set down on the metal floor of the maze, it trips an electric switch which signals its position to a mechanism under the floor. A motor-driven electromagnet moves swiftly to the spot directly beneath the mouse and from then on holds it in a magnetic grasp. The magnet turns through a 90-degree angle, carrying the mouse with it, then guiding it forward. If the mouse hits a barrier and detects, by means of its copper whiskers, that it is in a dead end, the magnet will back away, shift the mouse to another direction, and start it forward to try again to find an open path. It keeps trying until it finds the way to the goal. Then it remembers the successful path and can solve the maze directly without error.
To regulate the sequence of movement, a "programming" circuit has been built, consisting of 40 electric relays. Another part of the mouse's "brain," which serves as its memory, contains 50 relays. Two small motors complete the equipment.
By working with such problem-solving equipment, it is hoped that more will be learned about what man can do with machines. Many of the techniques by which machines are able to remember are currently being applied in the Bell System in dial switching, in automatic accounting, and in other equipment.
The real significance of this mouse and maze, lies in the four unusual operations it is able to perform. It has the ability to solve a problem by trial and error means, remember a solution and apply it when necessary at a later date, add new information to the solution already remembered, and forget one solution and learn a new one when the problem is changed.

The above two sequences are interesting in that the 'learnt' maze is altered (2nd panel before the finish), and the mouse is still capable of re-learning the change and solving the maze.

Shannon with the mouse.

The original mouse was carved from wood hollowed out to take a two-inch magnet bar of aluminium, nickel, and cobalt. It has two beady, button eyes, three small brass wheels for legs, and an pipe cleaner for a tail. Two copper whickers guide it through the maze to the "cheese" which is an electrical terminal that rings a bell when toughed by the whickers.

Bell built several versions of Theseus for demonstrations of the technology. One of them was known as Philbert as used by Southwestern Bell Telephone Company.  As late as November 1976 they were still being demonstrated.

Time-Life have about 70 images of Shannon, the mouse, and time-exposures of the maze. They can also be found in Google images by adding the option source:life .

1988c – Cybernetic Dog – Myasum Alyautdinov (Russian)

Published by the Radio and Communication ", 1988

CYBERNETIC TOY program-controlled

Fig. 82 depicts a funny puppy who goes merrily wagging his tail, barks, turning his head left and right, stopping, looking around, and then again with the barking continues to move. He constructed a young technician Muscovite Myasum Alyautdinov. The electronic block model is a software unit of the three timers. One switch connects power to the other two for some time (a minute), after which the model stops. Two software periodically relays stop model, including the device barking, or turn it into a movement. To get a long delay in eksiodnymi capacitors of small capacity, both timers are collected on operational amplifiers.

Figure 82 Cyber Dog

When rotating the pinion 44 clockwise "floating" gear 39 moves up and engages the gear 35 through an intermediate gear 34. Gear 35 rotates with the crank shaft 36, and the movement is transmitted through traction 6 head 9. This opens the mouth and at the same time under tension compressed spring device 33 simulates barking. The sounding device is a mechanical beeper. So, the dog barks, wags his tail, turns his head in different directions.

Complex mechanical part of the toy. It consists of a device that converts with the help of a crank mechanism and the intermediate levers and rods rotational movement of the electric motor in the reciprocating motion of the head, feet and tail. Required torque on the shafts, on which the gear mechanism provides a reversible multistage gearbox. To change the direction of rotation of the output shaft enough to change the polarity of the electric power source.
Graphic representation of the mechanical toy gives its kinematic diagram (see Fig. 83).
When rotating the gear 44 counterclockwise "floating" gear 39 moves downward, engages with the pinion 38, which, in turn, transmits motion to the crankshaft 37. This tree, the ball – nirno connected with the front legs 1, forcing them to touch the floor, simulating walking. Hind feet 25 move through the hinge joint with the front through the draft 26. During the walk moves the tail 21 and turns his head 9.

   Figure 83 Kinematic scheme

Traction tail 21 moves the gear 41, crank 43 and rod 42, and thrust 5 goals – lever 3, attached to the shaft gear 44. Bearing element of design is the chassis 27 (see Fig. 82), is running gear 30, motor 31 and all other details. They closed casing. The chassis and most of the details of the mechanism are made of sheet steel 0,8 mm thick. By the chassis along the ribs in place bend soldered pad. Tyagi, 6 and 26 are made of steel wire with diameter 1,5 and 2,5 mm, respectively. At the ends of all rods drilled holes into which are inserted wire splint. Most of the details of the construction is fixed with screws M2.
Reducer – homemade, made of gears from old toys. Driven pinion gear 32 coupled with motor gear diameter of 7 mm, fitted on its shaft. Sides gear made of sheet steel thickness of 1 mm. They are fastened with three screws M2, 5. At the screws between the plates wear a metal sleeve with the outer diameter of 4.5 mm and a length of 15 mm. Cranks worn on the walls, made of brass (or duralumin).
3336 battery supplying the electric motor, attach to the chassis by two straps 20 (see Fig. 82), and circuit boards 16, 18 of the decoder – in plastic racks 17 and 19. In toy used motor DI1 – 3 14MO 390 001 TU. Compared with other similar engines, it has a high capacity, high efficiency, low acoustic noise and interference.
Beeper 10 is made of cardboard and tracing paper papered. Within the fixed spacing of the spring steel wire with a diameter of 0,5 mm. Sound publishes a metal plate with thickness of about 0.08 mm, vibrating under the action of the jet air entering the cavity Tweeters. Attach it to the rack 11, soldered to the bottom of the head. The head 9 and the casing – a papier-mache (trim cotton soaked casein glue).
Mechanical part of the complex in the manufacture of toys. But the difficulties of its manufacture offset joy that you get from communicating with this fun toy.

Издательство «Радио и связь», 1988


На рис. 82 изображен забавный щенок, который ходит, весело виляя хвостом, лает, поворачивая голову направо и налево, останавливается, озираясь по сторонам, и затем снова с лаем продолжает движение. Его сконструировал юный техник москвич Мясум Аляутдинов. Электронный блок модели представляет собой программное устройство из трех реле времени. Одно реле подключает питание к двум другим на определенное время (около минуты), после чего модель останавливается. Два программных реле периодически останавливают модель, включая устройство лая, или переводят его в режим движения. Чтобы получить длительные задержки с эксиодными конденсаторами небольшой емкости, оба реле времени собраны на операционных усилителях.
Рис 82 Кибернетическая собака

При вращении шестерни 44 по часовой стрелке «плавающая» шестерня 39 перемещается вверх и зацепляется шестерней 35 через промежуточную шестерню 34. Шестерня 35 вращает вал с кривошипом 36, и движение через тягу 6 передается голове 9. При этом раскрывается пасть и одновременно при растяжении сжатой пружины 33 устройство имитирует лай. Звучащим устройством служит механическая пищалка. Итак, собака лает, виляет хвостом, поворачивает в разные стороны голову.

Сложнее механическая часть игрушки. Она состоит из устройства, преобразующего с помощью кривошипно-шатунного механизма и промежуточных рычагов и тяг вращательное движение электродвигателя в возвратно-поступательные движения головы, лап и хвоста. Необходимый вращательный момент на валах, на которых укреплены шестерни механизма, обеспечивает реверсивный многоступенчатый редуктор. Для изменения направления вращения выходного вала достаточно изменить полярность источника питания электродвигателя.
Наглядное представление о работе механической части игрушки дает ее кинематическая схема (см. рис. 83).
При вращении шестерни 44 против часовой стрелки «плавающая» шестерня 39 перемещается вниз, зацепляется с шестерней 38, которая, в свою очередь, передает движение на коленчатый вал 37. Этот вал, шар — нирно соединенный с передними лапами 1, заставляет их касаться пола, имитируя ходьбу. Задние лапы 25 передвигаются благодаря шарнирному соединению с передними через тяги 26. Во время ходьбы движется хвост 21 и поворачивается голова 9.
   Рис 83 Кинематическая схема

Тягу хвоста 21 приводит в движение шестерня 41, кривошип 43 и тяга 42, а тягу 5 головы — рычаг 3, прикрепленный к валу шестерни 44. Несущим элементом конструкции является шасси 27 (см. рис. 82), на котором установлены редуктор 30, электродвигатель 31 и все остальные детали. Они закрыты кожухом. Шасси и большая часть деталей механизма изготовлены из листовой стали толщиной 0,8 мм. К шасси вдоль ребра жесткости в месте сгиба припаяна накладка. Тяги 6 и 26 изготовлены из стальной проволоки диаметром 1,5 и 2,5 мм соответственно. На концах всех тяг просверлены отверстия, в которые вставлены шплинты из проволоки. Большинство деталей конструкции фиксировано винтами М2.
Редуктор — самодельный, изготовлен из шестерен от старых игрушек. Ведомая шестерня 32 редуктора сцеплена с электродвигателем шестерней диаметром 7 мм, насаженной на его вал. Боковые стенки редуктора изготовлены из листовой стали толщиной 1 мм. Их крепят тремя винтами М2,5. На винты между пластинами надевают металлические втулки с наружным диаметром 4,5 мм и длиной 15 мм. Кривошипы, надеваемые на валы, сделаны из латуни (или из дюралюминия).
Батарею 3336, питающую электродвигатель, крепят на шасси двумя скобами 20 (см. рис. 82), а монтажные платы 16, 18 дешифратора — на пластмассовых стойках 17 и 19. В игрушке используется электродвигатель ДИ1 — 3 14МО 390 001 ТУ. По сравнению с другими аналогичными двигателями он обладает повышенной мощностью, высоким КПД, низким уровнем акустических шумов и радиопомех.
Пищалка 10 сделана из плотного картона и оклеена калькой. Внутри закреплена распорная пружина из стальной проволоки диаметром 0,5 мм. Звук издает металлическая пластина толщиной около 0,08 мм, вибрирующая под действием струи воздуха, входящего в полость пищалки. Крепят ее к стойке 11, припаянной к нижней части головы. Голова 9 и кожух — из папье-маше (обрезки хлопчатобумажной ткани, пропитанные казеиновым клеем).
Электромеханическая часть игрушки сложна в изготовлении. Но трудности ее изготовления компенсируются радостью, которую вы получите от общения с этой веселой игрушкой.

1964 – “The Pud” Steam-powered robot – C. Hampton (British)

A Radio Controlled, Reversible, Steam Powered Christmas Pudding

Is "the Pud" an earlier form of the "Crabfu" type of  machine? 

Tags: , , , , , , , , ,